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Preface

As is true for many important things in life, this book grew out of an experience 
with failure. Specifically, I had just given (what I thought was) a riveting talk at a 
major conference detailing important new findings from my lab. In the question por-
tion of the talk, a key question asked by an audience member was how a competing 
theory could explain my data, a theory I did not know much about. How could this 
occur? Easily. We all work within specific theoretical silos, knowing some about 
opposing views but (for many of us, I suspect) not knowing as much about the theo-
ries that are not within our frame of reference as we do about the theory we rely on. 
Thus, the idea for this book was born – a book about distinct theoretical frameworks 
for the same phenomenon, infants’ and children’s use of a set of examples for learn-
ing. The goal was simple: to bring together differing perspectives on how children 
accomplish this type of unsupervised learning in a single book so that we could all 
easily learn from this set of examples! Specifically, this book brings into juxtaposi-
tion research from a range of theories (e.g., structural alignment, statistical learning, 
Bayesian learning). Particular theoretical commitments drive the types of questions 
we ask and the kinds of studies we design – to what extent can different theories of 
example-based learning mutually inform each other’s commitments and phenomena?

Editing this book has provided me with a chance to learn and think about the 
connections among the theories in this area, and it should be openly acknowledged 
that not all theories are represented. Yet, let’s embark on this comparison of com-
parison theories and see what we can learn by comparing theories to each other! 
Based on the growing evidence of the power of learning from examples exemplified 
in these chapters, by the end of this book, I predict that we all will leave with a 
richer understanding of the nature of learning. Happy reading!

San Antonio, TX, USA� Jane B. Childers 
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Chapter 1
Introduction

Jane B. Childers

Abstract  There are multiple theories explaining how children successfully identify 
and use patterns from exemplars in day-to-day life to support their learning. These 
influential perspectives both converge and diverge in the specific processes by which 
infants and children learn prior to formal schooling. This book constitutes the first 
systematic integration of highly influential research traditions in the domains of 
language and concept acquisition including statistical learning, the structure-
mapping account, and other perspectives. In this chapter, a brief summary of each 
chapter in the book is provided, and some preliminary links between chapters are 
outlined. More generally, by exploring both the benefits and challenges children 
face as they learn from multiple examples, and the major theories guiding different 
areas of research, both established researchers and graduate students should be able 
to better understand children’s early unsupervised language and concept learning.

This book examines the role of implicit, experience-based learning on children’s 
acquisition of language and concepts. There are multiple theories explaining how 
children successfully identify and use patterns from exemplars in day-to-day life to 
support their learning. These influential perspectives both converge and diverge in 
the specific processes by which infants and children learn prior to formal schooling. 
The goal of this volume is to review, compare, and contrast accounts of how the 
opportunity to recognize and generalize patterns across examples influences learn-
ing. This book constitutes the first systematic integration of highly influential 
research traditions in the domains of language and concept acquisition including 
statistical learning, the structure-mapping account, and other perspectives. We 
invited contributors who used different theories that each seek to explain how chil-
dren learn from multiple examples to consider (1) why learning in their domain 
requires multiple examples, (2) what mechanisms are central to the theory they use, 
(3) what procedures are used in their area and whether other procedures could be 
used to test learning in that area, (4) how other theories in the area may apply to 
their area, and (5) how the theory they use could be extended beyond the contexts in 
which it has been used.

J. B. Childers (*) 
Department of Psychology, Trinity University, San Antonio, TX, USA
e-mail: jchilder@trinity.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35594-4_1&domain=pdf
mailto:jchilder@trinity.edu
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All contributors were charged with drawing connections between their own and 
the other theories with respect to the underlying assumptions and mechanisms 
involved. In the epilogue, we seek to synthesize the perspectives of the contributing 
authors with the goal of identifying integrative themes, key differences in underly-
ing assumptions, and important future directions. By exploring both the benefits and 
challenges children face as they learn from multiple examples, and the major theo-
ries guiding different areas of research, we hope that both established researchers 
and graduate students will be able to better understand children’s early unsuper-
vised language and concept learning. In the next section, we will briefly describe 
each chapter that follows in this book and begin to discuss how the ideas in these 
chapters may fit together.

In Chap. 2, Scott Johnson provides a clear description of statistical learning as a 
set of processes for learning from distributional information. He then provides foun-
dational evidence from infant speech perception studies before describing new evi-
dence from studies of visual sequences with 2-month-olds. Infants appear to be able 
to show statistical learning abilities at birth (with simple stimuli) and improve over 
the first year, being able to process more complex stimuli with time. Other cues can 
also help statistical learning including social cues and prosody. Different procedures 
have been used to study statistical learning including using eye tracking to show that 
infants can anticipate items in a sequence, and using fMRI and measures of event-
related potentials (ERP)  to compare infants at risk for ASD with typically develop-
ing infants. There are also two possible mechanisms that underlie statistical learning: 
the storage of information about transitional probabilities (TPs) and the storage of 
chunks. Johnson provides evidence that infants may store TPs on the way to storing 
chunks. In sum, Johnson shows statistical learning is available very early in devel-
opment, can be used in both auditory and visual tasks, can be tested using multiple 
procedures, and can be linked to developmental disabilities. Exploring the mecha-
nisms that underlie statistical learning is a key task in current and future research.

In Chap. 3, Casasola and Park start with a compelling argument for exploring 
infant spatial cognition by linking it to several other domains including object cat-
egorization and relational learning. They then discuss prior studies that have 
included different types of variability that begin to show how different experiences 
may affect infants’ learning in this area. Infants’ ability to compare diverse exam-
ples improves with development, and the chapter provides a great description of 
how the understanding of spatial relations emerges in the first year. They remind us 
that abilities seen earlier in development may not extend across tasks or may be 
more fragile. An important set of studies described in this chapter are the studies 
that have tested different spatial relations (containment and support) at different 
ages and with varying number of examples (two vs. six). These studies show an 
important developmental change between 10 and 14 months, with 14-months-old 
possibly benefitting from seeing fewer examples (two) as compared to the 10-month-
olds, but likely because they are processing the stimuli more carefully, and in more 
detail, than infants are at the younger ages. The chapter ends with a discussion of 
different mechanisms that may underlie this learning, beginning with structural 
alignment or structure-mapping theory and then considering statistical learning as a 

J. B. Childers
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possible mechanism. They then discuss links between spatial tasks and language. 
Overall, the findings that the perceptual characteristics of stimuli, the numbers of 
examples, and the variety across examples are processed differently at different 
ages, are important findings that should extend to other domains discussed in this 
book. By comparing two theories in this chapter, readers can begin to see how each 
theory may apply to spatial cognition or to learning more generally.

In Chap. 4, Thiessen starts by reminding us that learning language requires using 
variable information across examples because language input is variable and chil-
dren must become generative, productive speakers. The chapter focuses on statisti-
cal learning as a theoretical framework, starting with examples of learning by 
attending to conditional probabilities. As in other chapters, he notes that variability 
across examples not only increases the complexity of the learning task but also 
helps generalizability. Examples of acquiring phonemes and attending to voice 
onset time (VOT) are provided, and evidence for statistical learning in the “real 
world” is given. The chapter then turns from conditional probability to distribu-
tional probability or using cross-situational statistics. In this area, the frequency of 
exemplars influences a category, as will also be discussed in other chapters. A cen-
tral thesis concerns the question of what underlies statistical learning, and an impor-
tant part of this chapter is examining how aspects of human memory may explain 
this type of learning. Theissen briefly discusses exemplar vs. prototype models and 
reminds us that there is good evidence for both, and then turns to two theories of 
neural processing that may explain how statistical learning may be instantiated in 
the brain. The first is the complementary learning systems approach (McClelland, 
McNaughton, & O’Reilly, 1995), in which both the hippocampus and neocortex 
interact to produce statistical learning effects, and the second is the hippocampal 
dynamic theory in which different parts of the hippocampus interact in statistical 
learning. Finally, exploring the roles of interference in memory and the role of 
similarity-based activation provides other links to the memory system. In sum, sta-
tistical learning may arise from memory processes, which could be key mechanisms 
that underlie this ability.

Chapter 5 (Hespos, Anderson, and Gentner) applies Gentner’s structure-mapping 
theory to infant learning, particularly focusing on infants’ understanding of the 
same/different relation. While prior studies focusing on analogical processing have 
examined children over the age of 2 years, these data investigate the origins of this 
ability. Two key aspects of the structure-mapping view are that comparing examples 
of a relation helps children improve in their ability to perceive relations and that 
attention to specific objects can interfere with relational processing. These are tested 
and found to apply in studies of young infants. An initial study shows infants at 
7–9 months can abstract the same/different relation from a series of examples and 
extend the relation to new objects. Additionally, prior experience with the specific 
objects involved in the test examples interferes with their relational processing. In a 
second study, these findings are extended to 3-month-olds. These studies also clar-
ify the role of variability across examples: 7- and 9-month-olds learn from four 
examples, but not a single one, while 3-month-olds succeed with two examples, but 
not six. In the next part, the authors compare three different relational learning para-

1  Introduction
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digms (match to sample, relational match to sample, and same/different discrimina-
tion) and review results from animal studies to put their infant results into context. 
Human infants are in a small group of animals that can solve this task, and they do 
it early (by 3  months) and without language cues. It is noteworthy that human 
infants can learn these relations with fewer than ten trials and it takes other species 
hundreds and sometimes thousands of trials to attain similar levels of performance 
(although in a somewhat different paradigm). In the next section of the chapter, the 
authors show that the structure-mapping framework extends to studies of language 
acquisition, including studies of word learning and statistical learning. For example, 
a simulation using the structure-mapping engine (SME) successfully captures infant 
learning in the Marcus et al. study of artificial grammar learning. The chapter ends 
by extending the theory to physical reasoning tasks (covering events). In sum, this 
chapter applies structural alignment theory to studies with young infants, providing 
evidence that relational abilities are present in the first year and are part of what 
makes humans different from other animals.

In Chap. 6, Graham et al. describe category-based inductive reasoning during the 
infancy and preschool years, highlighting the developmental continuity in funda-
mental inductive abilities across early childhood. They focus on adherence to a core 
induction principle, namely, premise-conclusion similarity, delineating the types of 
similarity that preschoolers and infants use to license their inductive inferences. 
Notably, infants as young as 13 months of age will privilege category information 
over perceptual information when extending nonobvious properties from one cate-
gory member to another. They then review recent studies from their lab examining 
the developmental origins of inductive reasoning between 9 and 11 months of age, 
with particular attention to the role of single vs. multiple exemplars in facilitating 
infants’ tendency to link properties with categories. Their results demonstrate that 
infants’ ability to associate properties with object categories is in place by 9 months 
of age but is modulated by a number of interacting factors, including category type 
(familiar vs. unfamiliar) and number of exemplars (i.e., whether infants are exposed 
a single-category exemplar or multiple-category exemplars during familiarization). 
When learning about familiar categories (i.e., dogs and cats), infants will generalize 
a property from a single exemplar. When faced with the more demanding task of 
learning about an unfamiliar category, exposure to multiple exemplars facilitates 
infants’ category-property generalizations.

In Chap. 7, Mutsumi Imai and Jane Childers focus on the problem of verb learn-
ing. The chapter starts with a description of the problem, contrasting it with noun 
learning and discussing differences across languages. They then remind the reader 
that children need to learn a verb system because a specific verb’s meaning is under-
stood in relation to all of the other verbs in the lexicon of a language. They propose 
that verb learning occurs in three phases: finding the core of a verb’s meaning within 
an event, discovering dominant patterns in a language, and delineating boundaries 
between individual verb meanings. In the first phase, there are two types of percep-
tual similarity that could be helpful to young language learners—sound symbolism 
and the similarity between objects in the original event and in new events. Empirical 
evidence is given for both of these types including studies of children learning 
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Japanese, Chinese, and English. In sum, children could use perceptual similarity, in 
the form of sound symbolism or object similarity, to get to a better understanding of 
relational similarity. Next, several studies showing that children benefit from seeing 
high-similarity examples before low-similarity ones are described, as well as stud-
ies of children’s use of contrast in verb learning. After describing how children may 
come to recognize patterns across verb meanings in a language, the authors turn to 
the question of how children learn a verb within an overall system by describing a 
study of verbs for carrying/holding in Chinese. This study used video stimuli and 
production data from children across multiple ages, their mothers, and undergradu-
ates. Thirteen verbs were included in the videos and participants were asked to 
name the action. This study shows that mothers were not different from undergradu-
ates in the number of verbs produced and that children produced fewer verbs than 
adults did, but there were no significant differences in the number of verbs produced 
for the videos between 3 and 7 years. The researchers examined how children were 
applying the verbs to the events and found that, with age, children grew closer to the 
adult uses. Both multidimensional scaling (MDS) and individual differences scaling 
(INDSCAL) analyses reveal children attended to the objects in the events and used 
the objects to inform their verb meanings. They also reveal three semantic islands of 
verb meaning. An entropy analysis shows that there is an early stage of verb learn-
ing in which input frequency is important and a later stage of verb learning in which 
the degree of boundary overlap with other verbs affects their ease of acquisition. In 
sum, the chapter provides ample evidence of children’s use of multiple exemplars 
for verb learning, using structure mapping as a theoretical framework. It also 
includes an interesting developmental story that puts the whole of verb learning in 
perspective.

In Chap. 8, Cathy Sandhofer and Christina Schonberg discuss how statistical 
learning applies to the problem of learning words, specifically nouns, focusing on 
children who are 2 years old and older. This chapter brings in new sources not dis-
cussed in the prior infant statistical learning chapters, especially Smith and Yu’s 
work showing that infants, children, and adults can learn co-occurrences between 
words and references in a laboratory task. They note that delays between examples 
and increased complexity of examples disrupt processing. They then describe an 
important study by Vlach and Sandhofer (2011) examining the role of context and 
timing on memory and comparison. This study shows that 2½- to 3-year-old chil-
dren have difficulty learning a new word and extending it to new objects at test when 
the context of the training trial and test trial differs, and that a condition in which the 
contexts across learning trials and test trials all varied yielded the fewest numbers of 
extensions. They then make the important point that access to multiple correlated 
cues, or support, is especially important when instances are varied because these 
cues help the learner aggregate information across examples, as demonstrated in a 
study by Goldenberg and Sandhofer (2013). These correlated cues should be espe-
cially needed when there are delays between instances and/or when learners are 
younger or less experienced; this could explain why, in their prior findings (2011), 
children had the most difficulty when multiple cues were not available. Next, they 
tackle the question of how variation across exemplars influences category learning 
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by describing a study by Perry, Samuelson, Malloy, and Schiffer (2010). In that 
study, 18-month-olds who only saw highly similar examples when learning new 
categories became more reliant on shape than necessary for those categories, while 
toddlers experiencing more variation were able to discover when object shape was 
important and when it was not. A final section of the chapter links statistical learn-
ing with memory processes (also linked in Chap. 4, Thiessen). They describe a 
study of word learning (Vlach & Sandhofer, 2011) showing that most forgetting of 
a new word over time happens between the immediate test and 1-week delay, with 
less forgetting between 1-week and 1-month delays. They describe how forgetting 
can help learning from a study-phase retrieval theory perspective and give evidence 
(Vlach, Ankowski, & Sandhofer, 2012) showing that spaced practice led to better 
performance in a memory task presented 15 minutes after learning than did simul-
taneous or massed practice conditions. Overall, several interesting new ideas are 
discussed in this chapter including the role of context cues, the tension between 
similarity and variability of examples, and learning over delays.

In Chap. 9, David Sobel, Elena Luchkina, and Kristen Tummeltshammer describe 
how toddlers and young children learn words from reliable speakers, and avoid 
unreliable speakers, using statistical learning processes and real-world knowledge. 
The chapter begins by describing a developmental change between 16  months, 
when toddlers expect all speakers to be accurate labelers, and 4 years, when chil-
dren can distrust speakers. It includes descriptions of many relevant prior studies in 
this area that provide the foundation for their studies. Interestingly, earlier under-
standing of distrust can be seen in studies that include contrast information between 
speakers. They then discuss a new study with 18-month-old children using the inter-
modal preferential looking paradigm (IPLP) procedure and reliable and unreliable 
speakers. This study shows children only looked longer at the correct object + label 
match when the speaker was accurate, which is at an earlier age than has been 
shown. A second study examines the origins of children’s ability to use social cues 
to assess others’ reliability. Eight-month-old infants were shown a face that gazed at 
an interesting video consistently over trials vs. one that was inconsistent. This study 
shows that these young infants could follow the gaze of a reliable face and general-
ize their response to new locations and did not do so with unreliable one. Statistical 
learning could account for these results if infants are forming a unit across multiple 
co-occurrences of a word + object + speaker and then use those co-occurrences to 
judge the valence of the speaker. The chapter then returns to developmental change 
noting that in categorization, 14-month-old infants attend to any regularity but 
18-month-olds are more selective about the types of regularities they consider 
(Madole & Cohen, 1995). To test this in the word-learning domain, the authors 
conducted a new study with dynamic arrows in addition to faces which showed that 
at 5 months, infants attended to regularities between objects and locations for faces 
and arrows (and could not generalize for either type); at 8 months, they generalized 
from faces but not arrows; and at 12–13 months, they followed the gaze and general-
ized from both accurate and inaccurate faces. The authors give reasons for this 
pattern of results, linking it back to prior research. In a final study, speakers asked a 
question with a new word (instead of giving a label in a statement) so that the co-
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occurrence of the label, object, and speaker was preserved without accuracy infor-
mation present. Eighteen-month-olds showed learning of familiar object labels but 
were at chance for novel object (+novel speaker at test) labels. Three- and four-year-
old children remembered labels from both accurate and inaccurate speakers equally, 
and exceeded chance, but were slower to respond when speakers were inaccurate. In 
sum, these researchers propose that infants and toddlers are using statistical learning 
processes across examples to form the initial associations between speakers, labels, 
and objects, and to generalize this information to new instances when judging 
whether speakers are reliable speakers or not. Children continue to use statistical 
learning processes with development but add existing knowledge (e.g., about prag-
matics). This model of statistical learning with a higher-level rational mechanism 
could extend to all selective social learning tasks or even to all of learning.

In Chap. 10, Elizabeth Lapidow and Caren Walker tackle a problem not yet 
explored in this book, which is how children create multiple examples that can be 
compared in the context of hypothesis testing. A key issue in this area is that both 
adults and children typically like to perform tests or actions that support their cur-
rent hypotheses—or positive tests—instead of conducting tests that could falsify a 
hypothesis. Such repeated demonstrations of the current hypothesis initially seem 
less helpful for learning. However, in the chapter, Lapidow and Walker show that 
positive examples can be useful because by demonstrating a hypothesis across time 
and/or contexts, the learner can discern the range of events to which that hypothesis 
can apply. In the first section of the chapter, the researchers define the positive test-
ing strategy (PTS) and distinguish it from “confirmation bias,” providing an over-
view of past research in the area of scientific reasoning and rule learning. They then 
discuss previous accounts of why children and adults engage in PTS, grouping these 
theories into two categories. According to one prior account, learners are assumed 
to be motivated to produce desirable outcomes or an “engineering goal.” According 
to others, learners fail to recognize the value of disconfirming alternative hypothe-
ses. A main point is that PTS should not always be seen as an error in thinking; there 
can be good reasons for it. Finally, the authors introduce a novel theory—the search 
for invariance (SI) hypothesis—drawing on accounts of early exploratory causal 
learning, which emphasizes the importance of invariance for the acquisition of 
causal knowledge. According to this account, learners produce multiple positive 
tests in order to assess the degree to which a current hypothesis holds across time 
and contexts. This fits a common theme throughout the chapters which is informa-
tion across examples informs transfer or generalizability. The authors then go back 
to three prominent studies of positive testing and reinterpret their results from the 
perspective of invariance. Overall, the chapter extends the question of how children 
form multiple examples to a new domain (hypothesis testing) and asks why learners 
create opportunities to gather examples in the ways that they do, and how these 
examples influence learning and transfer.

In the final chapter (Chap. 11), Christie adds one more area of research in which 
children likely learn from multiple examples—the social domain. She begins with 
descriptions of studies that show that relations can be hard to perceive when learners 
are not aware of the particular relation, and when object or perceptual similarity 
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competes with attention to relations. She gives an overview of structure-mapping 
theory (also see Hespos, Chap. 5; Imai and Childers, Chap. 7) with evidence from a 
study showing 4-year-olds needed to compare across examples to learn a novel rela-
tion. She then discusses two issues in comparison: the level of surface similarity 
needed across comparisons and the number of comparisons needed. The answers to 
these questions depend on the domain and the prior experience of the learner. Two 
adult studies (negotiation strategies, geoscience learning) are described. A study of 
adults’ learning nonadjacent dependencies in grammar suggests many examples can 
be useful and, at times, explicit instructions to compare are important. This leads 
into four factors that promote comparison across examples: high object similarity 
(including progressive alignment examples), specific comparative words (e.g., 
“more,” “taller”) within a domain, systematic description of a problem (a study with 
number words provides evidence), and labels. The final section extends these ideas 
into the social domain. Young children can perceive social relations in the first 
18 months but also can show some difficulties learning them. This could be due to 
a lack of specific social knowledge that they need and issues when surface similarity 
competes with relational reasoning. A new study applying structure-mapping theory 
to children’s false belief understanding shows that children who can compare across 
examples show better false belief reasoning at test (vs. children without compari-
sons). Comparing highly similar examples usually helps comparison but could also 
be harmful in the social domain as it could create narrower social categories. On the 
other hand, alignment and comparison can highlight deeper relational information, 
which could be helpful in the social domain. New evidence shows children reason 
differently about people vs. animals, thinking more broadly about people. In sum, 
the chapter brings in a new domain—children’s learning of social roles and catego-
ries—and describes how structure-mapping theory could apply in this new promis-
ing area of research.

In sum, this book begins with five chapters focusing on infant development and 
their use of multiple exemplars in the understanding of objects in visual sequences, 
spatial relations, speech sounds, and relational concepts and their ability to make 
inductive generalizations in a category. In the next five chapters, the authors focus 
on development in preschoolers and older children taking on the problems of how 
children could use information across multiple exemplars to learn verbs (and the 
verb system) and nouns, consider whether words are heard from reliable speakers, 
construct multiple examples in scientific reasoning, and learn social categories. 
Across these chapters, researchers largely frame their work in terms of statistical 
learning or structure-mapping theories, though at times the particular theory is not 
articulated and the focus is on development. Key themes across chapters are that 
comparison skills develop such that children can process more varied exemplars 
with age and can bring in real-world knowledge to add to their processing with age. 
In the epilogue, I will return to these key themes and add new ones to more fully con-
sider how this body of work fits together.

J. B. Childers
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Chapter 2
Mechanisms of Statistical Learning 
in Infancy

Scott P. Johnson

Abstract  Statistical learning is the process of identifying patterns of probabilistic 
co-occurrence among stimulus features, essential to our ability to perceive the world 
as predictable and stable. Research on auditory statistical learning has revealed that 
infants use statistical properties of linguistic input to discover structure that may facili-
tate language acquisition. More broadly, statistical learning operates across sensory 
modalities and across species. Research on infants’ visual statistical learning has 
revealed that statistical learning develops over time, yet the mechanisms (including 
developmental mechanisms) underlying infant performance remain unclear. This 
chapter examines competing models of statistical learning and how learning might be 
constrained by limits in infants’ attention, perception, and memory.

The means by which humans acquire and represent knowledge is fundamental to 
cognitive science, and a central question asked by developmental psychologists 
concerns how infants learn so much in so little time without explicit instruction. For 
example, the rapidity and apparent ease with which infants and young children 
understand and produce speech, recognize faces, interpret others’ mental states, 
detect violations of physical laws governing object properties, and discriminate dif-
ferent numbers of items have led some theorists to suggest that innate cognitive 
mechanisms—independent of learning and experience—provide the infant with 
some knowledge in each of these domains (Chomsky, 1965; Johnson & Morton, 
1991; Leslie, 1997; Spelke, 1990; Wynn, 1992). Yet such views may neglect the role 
of environmental structure in guiding development, and studies of infant statistical 
learning (SL), the focus of this chapter, can help shed light on this issue. Statistical 
learning (SL) is a set of processes for learning stimulus features, objects, and events 
from distributional information over space and time: simple associations, probabi-
listic correspondence, frequencies, spatial positions, and order in sequence. SL 
contributes to segmentation of continuous information (such as speech) and the 
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formation of representations of units in time and space, thus helping to shape cogni-
tive development (Frost, Armstrong, Siegelman, & Christiansen, 2015; Siegelman 
& Frost, 2015), and it is an important part of language acquisition (see Chap. 4).

In this chapter, I discuss research efforts to discover the nature of SL in infancy, 
the kinds of statistical structure that infants are able to learn, the impact of different 
testing methods on infant learning, implications of infant SL for cognitive develop-
ment and developmental disabilities, and, finally, mechanisms underlying statistical 
learning in infancy. As I will try to make clear, the importance of statistical learning 
for understanding cognitive development, language acquisition in particular, has 
become increasingly evident in the 20+ years since publication of the first paper 
describing SL in infants (Saffran, Aslin, & Newport, 1996). Yet much remains 
unknown about the foundational processes and mechanisms of SL in infancy.

�Statistical Learning in Infancy

Research on detection of structure in complex input sequences has a considerable 
history (e.g., Gibson & Gibson, 1955; Reber, 1967). It has long been known that 
adult learners can detect patterns in the absence of explicit (articulable) knowledge 
(Reber, 1989), raising questions of learnability of complex sequences by nonverbal 
populations. SL in infants was first reported by Saffran et al. (1996) with a head-turn 
procedure. Eight-month-old infants listened to a continuous stream of computer-
generated speech for 2 minutes, followed by a test phase during which segments of 
the familiarized speech stream, now separated by brief pauses, alternated with seg-
ments whose order was scrambled or whose parts had co-occurred relatively infre-
quently in the training set. One study, for example, familiarized infants with the 
pseudo-words tupiro, golabu, padoti, and bidaku in random order and with no 
pauses or immediate repetitions (e.g., tupirogolabupadotibidakugolabutupirobida-
kupadotitupiro…). The test phase involved two of the four original “words” (e.g., 
tupiro, golabu) and two “nonwords” (e.g., dapiku, tilado) formed from a random 
assembly of syllables; words and nonwords were separated by a 500 ms gap. Infants 
in a second experiment heard words alternating with “part-words” formed from the 
last syllable of a word combined with the first two syllables of a different word (e.g., 
bupado, kugola). Discrimination of words from nonwords and part-words was eval-
uated during the test phase by recording look durations toward a flashing light that 
accompanied repeated presentation of test stimuli, on the right or left side of a test-
ing chamber, on the assumption that interest in the sound sequences could be opera-
tionalized as attention in the direction of the light. Infants in both experiments 
exhibited increased interest in the novel items (nonwords and part-words).

How were infants able to parse the speech stream into coherent words, recognize 
them when heard in isolation, and discriminate them from the part- and nonwords? 
One possibility is that infants learned words from differences in transitional prob-
abilities (TPs) between adjacent syllables, because there were no other cues to seg-
mentation, such as pauses and prosody, that typically mark word and phrase 
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boundaries in real-world speech (Fougeron & Keating, 1997; Wightman, Shattuck-
Hufnagel, Ostendorf, & Price, 1992). TP is a statistical measure that describes the 
predictability of adjacent items in an array or sequence (Miller & Selfridge, 1950; 
the TP of successive element XY is defined as probability of Y|X = frequency of 
XY/frequency of X). In the Saffran et al. (1996) study, TPs within words such as 
tupiro were always 1.0, meaning tu perfectly predicted pi; in turn, pi perfectly pre-
dicted ro (see Fig. 2.1). TPs between words, however, were lower, averaging 0.33. 
This is because ro (in tupiro) was sometimes followed by go (in golabu), sometimes 
by pa (in padoti), and sometimes by bi (in bidaku). Thus nonwords and part-words 
heard during the test phase such as dapiku and bupado had lower TPs between syl-
lables than words such as tupiro and padoti. The Saffran et al. results imply that 
infants detected the TP differences in the test stimuli and preferred to listen to the 
low-TP stimulus owing to its violation of word boundaries.

But there is an alternative explanation: Words in the familiarization stimulus 
were heard 3× more often than nonwords, and part-words were never heard, and so 
it is possible that infants preferred nonwords and part-words simply because they 
were unfamiliar, not due to lower TPs. To address this possibility, Aslin, Saffran, 
and Newport (1998) tested 8-month-olds with a “frequency-balanced” design in 
which the word and part-word heard at test were presented the same number of 
times during familiarization. TP differences, however, were the same as those in the 
Saffran et al. (1996) study. Infants showed increased interest in the part-word at test 
relative to the word, replicating the Saffran et al. results and providing evidence that 
segmentation and learning were based on TPs, not simple frequencies of syllables 
or words. TP differences between syllables, therefore, seem to facilitate the learning 
of sequence structure by signaling boundaries and units in an otherwise uninter-
rupted stream of items.

More broadly, SL operates across sensory modalities and across species. In 
human adults, SL participates in fundamental perceptual and cognitive functions 
including visual search, object perception, motor planning, and event prediction 
(Baker, Olson, & Behrmann, 2004; Fiser & Aslin, 2002a; Hunt & Aslin, 2001; Turk-
Browne, Scholl, Johnson, & Chun, 2010). Animal species learn statistically 

Fig. 2.1  Schematic description of how transitional probabilities between syllables mark word 
boundaries
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structured speech streams (e.g., Hauser, Newport, & Aslin, 2001; Toro & Trobalón, 
2005), and human infants parse streams of musical tones based on statistical prob-
abilities (Saffran, Johnson, Aslin, & Newport, 1999).

Experiments in my lab (Kirkham, Slemmer, & Johnson, 2002) provided the first 
demonstration of infants’ SL in visual sequences with an experiment in which 
infants were habituated to a stream of looming colored shapes organized in pairs 
defined by TPs. (Habituation is defined as a decrement in looking across trials 
according to a predetermined criterion, e.g., a decline of 50% or more during four 
successive trials relative to the first four trials.) TPs within pairs were 1.0, and TPs 
across pairs were 0.33 (see Fig. 2.2). Each shape had a unique color and loomed 
from about 4 to 24 cm across in 1 s, with no pauses to mark pairs. Following habitu-
ation, infants viewed two test sequences with the same shapes: a “structured” 
sequence, defined by the same TPs as those in the habituation stimulus, and a pseu-
dorandom sequence (no shape repetitions). Infants at 2, 5, and 8 months looked 
reliably longer at the random sequence, interpreted by Kirkham et al. as showing 
sensitivity to the statistical properties of the input—the TPs defining shape pairs in 
the habituation sequence—and noted when these statistics were violated. Infants at 
all three ages showed a reliable novelty preference for the random pattern, with no 
significant age differences aside from longer looking in general by the young-
est group.

My colleagues and I then asked if visual SL may be available at birth with a 
replication of the Kirkham et al. (2002) methods, modified to suit newborns’ limited 
color vision with the use of monochromatic stimuli (Bulf, Johnson, & Valenza, 
2011). Newborn infants provided no evidence of discriminating random from struc-

Fig. 2.2  Schematic depiction of habituation and test displays testing for visual statistical learning 
in infants (Kirkham et al., 2002)
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tured six-item sequences. We reasoned that three pairs of shapes (a high-demand 
condition; e.g., ABCDEFCDABEFABCDABEF…) might overwhelm newborns’ 
ability to track probabilities. This hypothesis was addressed with a two-pair, low-
demand condition (e.g., ABCDCDABCDABABCDAB…). We observed a novelty 
preference for the random sequence in the low-demand condition, as did the older 
infants observed by Kirkham et al. who were tested with a high-demand condition. 
Thus the Bulf et al. study provides evidence that visual SL may be constrained by 
newborns’ limited cognitive resources, perhaps preventing identification of relevant 
visual information necessary to detect statistical structure.

The Bulf et  al. (2011) and Kirkham et  al. studies (2002) documented young 
infants’ ability to detect statistical information in sequences of discrete, looming 
shapes. By 8 months, infants detect probabilistic patterns in spatiotemporal visual 
sequences in which shapes appeared in  locations defined by TPs of 1.0 or 0.33 
(Kirkham, Slemmer, Richardson, & Johnson, 2007), and by 9  months, infants 
encode the underlying spatial statistical structure of multiple-element scenes in 
which shapes were arranged in groups defined by conditional probabilities among 
individual items (Fiser & Aslin, 2002b). These results led to claims of a domain-
general SL device that is available early and operates across modalities, across 
time and space, and across species, suggesting that SL might be a predisposed, 
general associative mechanism (Kirkham et  al., 2002). This hypothesis is sup-
ported by reports of SL and discrimination of visual and linguistic sequences in 
newborns (Bulf et al., 2011; Teinonen, Fellman, Näätänen, Alku, & Huotilainen, 
2009), constituting evidence for sensitivity to statistical information at birth in at 
least two modalities (vision and audition). SL is now a central feature of recent 
theories of human perception, cognition, and development (e.g., Aslin & Newport, 
2012, 2014; Hasson, 2016; Krogh, Vlach, & Johnson, 2013; Thiessen, 2016; Turk-
Browne, 2012).

�Kinds of Statistical Structure Infants Are Able to Learn

As noted previously, early studies of SL were aimed largely at questions of (a) 
whether infants might use SL to segment continuous speech into discrete units 
(Aslin et al., 1998; Saffran et al., 1996) and (b) the possibility that infants’ SL might 
be a domain-general learning mechanism (Kirkham et  al., 2002; Saffran et  al., 
1999). These studies examined SL with methods involving a learning (familiariza-
tion or habituation) phase with streams of unsegmented auditory or visual sequences, 
followed by a test phase probing for recognition of clusters of items that were either 
high or low in TPs. Results were taken to indicate that SL in infancy was domain-
general and innate: that is, SL was proposed to operate across multiple kinds of 
sensory inputs and available from birth (Kirkham et al., 2002). Yet only the Aslin 
et al. study was designed to rule out other kinds of statistical information, such as 
frequency, in favor of TPs. The Kirkham et al. study did not test for infants’ TP 
learning or segmentation: Instead, infants were tested for simple discriminations of 
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TP-structured sequences vs. pseudorandom sequences. This kind of discrimination 
was later discovered to occur even without a learning phase: Five-month-olds were 
tested with two six-shaped visual sequences, seen in alternation, that either were 
ordered randomly or followed the statistical structure described previously. 
Interestingly, the infants looked longer at random vs. structured sequences of visual 
shapes, even without prior familiarization or habituation (Addyman & Mareschal, 
2013), thus demonstrating a spontaneous preference for random sequences that 
does not require prior experience or learning. This implies that infants in the 
Kirkham et al. and Bulf et al. (2011) experiments did not necessarily learn anything 
during the experiment, calling into question the likelihood that SL operates from 
birth and undergoes little developmental change in infancy.

The Addyman and Mareschal (2013) results also imply that young infants can 
discriminate sequences solely from ordinal information—the orderings of items. 
Ordinal information, like TP information, is a kind of statistic, but recognition of 
ordinal violations may be less demanding than recognition of TP violations, espe-
cially when infants are also required to segment an input stream into units. Consistent 
with this possibility, infants as young as 3 months were reported to identify viola-
tions of serial order in audiovisual sequences (Lewkowicz, 2008); in contrast, 4.5- 
and 5-month-olds, but not younger infants, segmented visual sequences from TP 
differences (Marcovitch & Lewkowicz, 2009; Slone & Johnson, 2015). These stud-
ies highlight an important distinction between discrimination of different sequences 
based on statistical information and learning statistical information to segment 
sequences of items into clusters or units. The studies also highlight the distinction 
between different statistics that might be identified and/or learned. Furthermore, the 
Addyman and Mareschal results are important in demonstrating that infants’ prefer-
ences for items in sequence might stem from differences in complexity (cf. Kidd, 
Piantadosi, & Aslin, 2012, 2014; Tummeltshammer & Kirkham, 2013).

Other kinds of inputs have been examined in infant SL tasks. For example, by 
11 months, infants can learn probabilistic sequences of items appearing in predict-
able spatial locations, and 8-month-olds can learn spatiotemporal sequences when 
item location combines with color and shape cues (Kirkham et al., 2007; cf. Sobel 
& Kirkham, 2006; Tummeltshammer & Kirkham, 2013); 5-month-olds tested 
under identical conditions did not appear sensitive to spatial information for the 
sequence. Infants at 8 months also were reported to learn predictable co-occur-
rences of items in visual arrays, akin to TPs between items in sequence (Fiser & 
Aslin, 2002b), and at 9 months, infants’ SL of object features in visual arrays was 
facilitated by a social cue: a woman seen to be looking in the location where a 
coherent configuration was displayed (Wu, Gopnik, Richardson, & Kirkham, 
2011). Also, other cues to segmentation that are present in real-world speech, such 
as prosody (Thiessen & Saffran, 2003) and word length (Lew-Williams, Pelucchi, 
& Saffran, 2011; Lew-Williams & Saffran, 2012), interact with, and constrain, SL 
of speech sounds.

Finally, there have been claims that infant SL has an important role in develop-
ment of abstract “rule learning,” a kind of pattern learning involving identification 
of simple reduplicative patterns and generalization of the pattern to new items 
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(e.g., Gerken, 2006; Marcus, Vijayan, Rao, & Vishton, 1999), and an important 
foundation for analogical reasoning (see Chap. 5). Infants’ learning and generaliza-
tion of simple abstract rules in sequential patterns were first investigated by Marcus 
et al. (1999), who exposed 7-month-old infants to strings consisting of computer-
generated speech. In their first experiment, strings followed either an “ABA” pattern 
(e.g., gah tee gah, nee lah nee) or an “ABB” pattern (e.g., gah tee tee, nee lah lah). 
A and B items were separated by 250 ms of silence, strings by 1 s of silence. The 
speech stream was accompanied by a flashing light, mounted centrally in the testing 
chamber. After 2 minutes of continuous repetitions of one of these two familiariza-
tion patterns, the infants received trials of the same (familiar) pattern instantiated by 
different phonemes (e.g., woh fei woh, dee koh dee) and the second (novel) pattern 
on alternating trial, from a speaker located either to the left or right of the infant. 
Each kind of test stimulus was also accompanied by a flashing light, located either 
left or right, and learning was operationalized in terms of differences in looking 
time toward the light when the word or part-word was heard. The infants exhibited 
a reliable preference for the novel pattern, a result that extended to a test of ABB vs. 
AAB. The balance of phonetic features across familiarization and test stimuli ruled 
out the possibility that performance was based on learning sequences of low-level 
cues (such as voiced vs. unvoiced consonants). Importantly, the positive outcome of 
the ABB/AAB comparison obviated an account based on learning a simple redupli-
cation pattern (i.e., adjacent repetition) without respect to its place in sequence (i.e., 
initial/final edge position).

The Marcus et al. (1999) task bears superficial similarities to the Saffran et al. 
(1996) task: Infants listened to a structured speech stream for 2 minutes, and they 
were tested for recognition of the underlying pattern using a head-turn method to 
generate preferences for a flashing light on one vs. the other side of a testing cham-
ber. Yet there is a vital difference in what is tested in these two paradigms. In SL 
tasks such as the Saffran et al. study, infants are asked to segment a speech stream 
into units that are bounded by dips in TPs: that is, the words heard at test (now seg-
mented) had higher internal TPs than nonwords or part-words. In abstract rule-
learning tasks such as the Marcus et al. study, in contrast, infants are not required to 
segment the input (it is already segmented into units) nor are they required to recog-
nize correspondences among items, learned during familiarization, to the same 
items at test. This is because no items from familiarization were heard at test. 
Instead, infants were required to learn an abstract pattern that, as noted previously, 
was independent of surface features (such as vowels and consonants).

Nevertheless, there have been proposals for a common mechanism supporting 
infant SL and abstract rule learning (see Chap. 5 for additional discussion), per-
haps because (a) language experience facilitates both SL (e.g., Saffran & Wilson, 
2003) and abstract rule learning (Marcus, Fernandes, & Johnson, 2007), (b) sim-
ple connectionist models can explain both sets of results (e.g., Christiansen & 
Curtin, 1999), (c) simple reduplications may comprise a “perceptual primitive” as 
a basis for pattern extraction (e.g., Gerken, Dawson, Chatila, & Tenenbaum, 2015; 
Gómez & Gerken, 2000), or (d) abstract categories can arise from purely statisti-
cal input (Aslin & Newport, 2012, 2014; see Reeder, Newport, & Aslin, 2013 for 
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evidence from adults). However, to my knowledge, there are no reports of any 
direct demonstrations in infants that SL and abstract rule learning stem from a 
single learning mechanism. Indeed, experiments in my lab designed to test SL and 
abstract rule learning from identical four-item audiovisual sequences found that 
11-month-olds could learn about specific items and their positions in sequence—
that is, statistical information, in this case order of items in a series. In contrast, 
the infants did not appear to learn a simple reduplication—that is, an abstract rule 
that was independent of surface features (Schonberg, Marcus, & Johnson, 2018; 
see Fig. 2.3).

In summary, studies of SL in infancy have tended to focus on infants’ learning of 
TPs in segmentation tasks. Other kinds of statistical information are also available 
(ordinal information, frequency, repetition, linguistic cues), but their roles in seg-
menting and learning, and their interactions with TPs between stimulus features as 
contributions to learning, are not well understood at present.

Fig. 2.3  Schematic depiction of stimuli used to test for infants’ abstract rule learning, a “medial 
repetition rule” (top panel), and statistical learning, the specific positions of items in their ordinal 
positions (bottom panel). Each condition used identical habituation stimuli but tested for learning 
of either an abstract pattern or one based on items in sequence. Eleven-month-olds appeared to 
learn edge position violations, but not the abstract repetition rule. (Adapted from Schonberg et al. 
(2018))
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�Testing Methods

The majority of published infant SL studies have employed a learning phase (famil-
iarization or habituation) followed by a test phase in which infants are observed for 
evidence of segmentation of continuous input, undifferentiated except by virtue of 
TP differences among adjacent items, and recognition of parsed units vs. foil stimuli 
consisting of a reordering of individual items (see Saffran & Kirkham, 2018, for 
review). Effects of variations in testing methods, such as the use of different stimuli 
in the same paradigm, are not well understood (see Chap. 4 for further discussion), 
but there is some evidence that their investigation can be fruitful (Kirkham et al., 
2007). For example, Lewkowicz (2004) examined infants’ detection of violations of 
serial order of items in sequence and found that ordinal information was more read-
ily identified in sequences of linearly moving objects than looming objects pre-
sented in a single location (as in the Kirkham et al., 2002, method).

Eye-tracking and brain-based methods have provided complementary and, in 
some cases, unique insights into infants’ SL. Eye-tracking methods involve records 
of infants’ point of gaze as they view displays on a monitor (Gredebäck, Johnson, & 
von Hofsten, 2010). SL studies have examined eye movement (saccadic) latencies 
to items in sequence, the prediction being that spatial locations of more predictable 
items, by virtue of high TPs between items, will be fixated more quickly. As noted 
previously, evidence in support of this prediction was provided by the Kirkham 
et al. (2007) experiment in which infants were found to look toward locations in 
which a predictable item appeared vs. one of the other five locations on the display. 
More recently, Tummeltshammer and Kirkham (2013) examined 8-month-olds’ 
saccadic latencies when viewing six-location visual arrays with sequences of spa-
tiotemporal events. Arrays resembled a house or storefront with windows in which 
shapes appeared one at a time in a probabilistic sequence comprising three shape 
pairs. Each shape appeared in a particular window, disappeared, and subsequently 
reappeared in a different window according to its assigned probability. Items 
appeared in sequence with TPs of 1.0, 0.75, or 0.5, and one group of infants viewed 
arrays with additional competing visual distracters. Items with higher TPs were 
attended more often and with fewer errors (i.e., predictive looks) overall, and this 
effect interacted with the presence of distracters: With no distraction, latencies were 
fastest to high-probability (0.75) TP events, but with distracters, latencies were fast-
est to “deterministic” events with TPs of 1.0. These findings suggest that infants’ SL 
guides predictive behavior and that predictions are influenced by distributional 
properties of the entire scene, even events (distracters) unrelated to the predict-
able items.

Brain-based methods have been used to examine cortical loci of SL with func-
tional MRI under various testing conditions in adults (e.g., Karuza et  al., 2013; 
Lieberman, Chang, Chiao, Bookheimer, & Knowlton, 2004; Turk-Browne, Scholl, 
Chun, & Johnson, 2009) and children (McNealy, Mazziotta, & Dapretto, 2011). 
Electrophysiological methods, in particular event-related potentials (ERPs), have 
yielded evidence concerning the time course of “online” learning in adults from 
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changes in the timing and strength of electrical cortical potentials (viz., ERP com-
ponents) recorded at the scalp (e.g., Abla, Katahira, & Okanoya, 2008; Abla & 
Okanoya, 2009). ERPs have been used as an index of differences in visual SL 
between children with autism spectrum disorder (ASD) and typically developing 
children and have revealed impairments in some children with ASD (Jeste et al., 
2015). ERP methods are more feasible for use with young populations relative to 
fMRI, and they have been used to examine SL in infants. For example, Teinonen 
et al. (2009) observed ERP differences to statistically structured vs. unstructured 
speech sequences in sleeping neonates, and Marin et al. (2019) observed ERP dif-
ferences during a visual SL task between 3-month-old infants at elevated risk for 
ASD (due to high genetic load) and low-risk infants. The Jeste et al. and Marin et al. 
studies are discussed in more detail in the next section.

In sum, eye-tracking and brain-based methods, in particular electrophysiological 
methods, require specialized designs and equipment but can provide particularly 
sensitive measures of SL.  This can be especially important for infant studies. 
Infants’ control of eye movements is well-established even at birth (Gredebäck 
et al., 2010), and clever research designs can exploit infants’ tendency to explore 
novel scenes and learn contingencies among events, including probabilistic events. 
ERPs, likewise, can be used in infants at all ages (de Haan, 2007) and can reveal 
cortical activity in response to probabilistic events that more overt behaviors cannot 
necessarily reveal.

�Implications of Infant SL for Cognitive Development 
and Developmental Disabilities

There is extensive evidence that SL is related to and perhaps facilitates language 
acquisition (see Romberg & Saffran, 2010, for review). In 8-month-olds, for exam-
ple, nonsense words acquired via SL are treated as “candidate” words when embed-
ded in new linguistic contexts (Saffran, 2001); moreover, SL provides candidate 
words that can become associated with novel objects at 17  months (Graf Estes, 
Evans, Alibali, & Saffran, 2007) and with novel object categories at 22  months 
(Lany & Saffran, 2010). In addition, 8.5-month-olds’ performance on a visual SL 
task was correlated with the infants’ vocabulary size, assessed by parental report 
(Shafto, Conway, Field, & Houston, 2011). Six-month-old infants’ oculomotor 
responses to events in a visual pattern-learning task predicted vocabulary size 
16 months later (Ellis, Gonzalez, & Deák, 2014), and 6- to 8-year-olds’ visual SL 
performance predicted their comprehension of native-language syntax (Kidd & 
Arciuli, 2016). However, measures of cognitive development more broadly (i.e., 
independent of language), such as performance on the Bayley Scales (Bayley, 
2005), general IQ, and gesture comprehension, were not related to SL performance 
(Ellis et al., 2014; Kidd & Arciuli, 2016; Shafto et al., 2011).
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Evidence for how SL might affect developmental disabilities is consistent with 
these findings: SL is related to language acquisition and performance but may have 
somewhat less impact on cognitive function. For example, the possibility that SL is 
impaired in ASD has received mixed support. Some studies report impaired SL 
(e.g., Jeste et al., 2015; Scott-Van Zeeland et al., 2010), but others report little or no 
impairment (Mayo & Eigsti, 2012) or even enhanced SL in ASD (Roser, Aslin, 
McKenzie, Zahra, & Fiser, 2015). ASD, however, is a heterogeneous disorder that 
remains poorly understood at the level of individual differences (Jeste et al., 2015), 
and notably, these studies of SL in ASD used varying methods and tested different 
populations (e.g., children with unknown symptom severity vs. high-functioning 
adults), making direct comparisons of results difficult. In infants with Williams syn-
drome, a developmental disorder characterized by strong language skills but 
impaired intellectual capacity, SL seems to be intact (Cashon, Ha, Graf Estes, 
Saffran, & Mervis, 2016). A recent meta-analysis found strong and consistent evi-
dence for reduced SL in individuals with specific language impairment but mixed 
evidence for reduced SL in individuals with ASD (Obeid, Brooks, Powers, Gillespie-
Lynch, & Lum, 2016).

Recently, Jeste et al. (2015) investigated ERP correlates of SL in children with 
ASD vs. typically developing controls. ERP was recorded as children watched 
streams of looming shapes, similar to methods described previously with infants 
(Kirkham et al., 2002), and after a learning phase, they introduced a violation of the 
expected sequence by showing an unexpected shape. This study revealed two 
important findings. First, the ASD group showed attenuated evidence of SL in two 
ERP components: a reduced “N1” component, which was theorized to signify early 
visual recognition, akin to the N100  in adults (Coull, 1998) and a reduced P300 
component, which represents attention to salient information and probabilities of a 
target stimulus (Picton, 1992). Second, analyses of individual differences in the 
ASD group revealed a positive correlation between N1 amplitude difference and 
nonverbal IQ and a positive correlation between P300 amplitude difference and 
adaptive social function. This study demonstrates, therefore, that ASD is highly 
variable among individuals, and variability in learning capacity may help explain 
deficits in social, and perhaps cognitive, function.

In infants, my colleagues and I recently recorded ERPs in 3-month-old infants at 
elevated or low risk for ASD, due to the presence (or not) of one or more close family 
members having received a diagnosis of ASD (Marin et al., 2019). We asked whether 
visual SL at 3 months, recorded as described previously for the Jeste et al. (2015) 
experiment, might predict cognitive function and ASD symptoms at 18  months. 
Interestingly, higher-risk infants demonstrated increased neural responses (late slow 
wave and N700 components) to the probabilistic event, whereas low-risk infants dem-
onstrated increased neural responses to the deterministic (expected) event. Moreover, 
individual differences in these ERP components at 3 months predicted visual recep-
tion ability and ASD symptoms at 18 months of age. The reasons for these differences 
so early in infancy are not yet clear, but the potential predictive value for emerging 
ASD symptoms from such observations may be an important finding.
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�Mechanisms Underlying Statistical Learning in Infancy

As noted in prior sections, SL is a powerful means by which infants learn about a 
structured environment, and studies of SL can be particularly informative about 
learning in children with developmental disabilities. Yet the specific processes 
underlying SL remain unclear. Recently, research in my lab (Slone & Johnson, 
2018) investigated two types of models underlying statistical learning: “statistical” 
(or “transition-finding”) and “chunking” (or “clustering”) models that have been 
proposed to account for SL in adults (Thiessen, Kronstein, & Hufnagle, 2013).

The goal of both statistical and chunking models is to account for sensitivity to 
sequential structure and the units that are learned, but they differ in the proposed 
representations stored in memory. Statistical or TP-learning models can be instanti-
ated in computational models known as simple recurrent networks (e.g., Elman, 
1990) that compute and represent statistical relations between items, such as TPs, in 
memory. Representing TPs informs the model of the likelihood of two items occur-
ring together and allows the model to predict individual items based on previous 
items in a sequence. In the syllable stream used by Saffran et al. (1996), for example 
(Fig. 2.1), the model would learn that the probability of pi after tu and the probabil-
ity of ro after pi are high, because items tu, pi, and ro always appear in order (in the 
word tupiro). The probability of pa after ro, in contrast, will be lower because padoti 
follows tupiro only 1/3 of the time in the familiarization sequence. In this way, sta-
tistical models can distinguish statistically coherent units of information contained 
within a sequence (e.g., tupiro) from less coherent units like part- words (e.g., 
ropado). Importantly, statistical models do not explicitly represent statistically 
coherent units (e.g., words); rather, they represent statistical relations between items 
(e.g., syllables) as TPs.

Chunking models, in contrast, represent statistically coherent units of information 
in memory. One such computational model, the “truncated recursive autoassociative 
chunk extractor” (TRACX), forms groupings simply by joining items that tend to co-
occur (French, Addyman, & Mareschal, 2011; Mareschal & French, 2017). Groupings, 
or chunks, become single units that can be stored in memory. Representations of units 
whose component items co-occur regularly are progressively strengthened in mem-
ory, whereas representations of units whose component items do not co-occur regu-
larly are forgotten. In the Saffran et al. (1996) sequence, for example, the model could 
initially capture the sequence tupiropadoti in three separate chunks: tupi, ropa, and 
doti. Over time, chunks tupi and doti will be reinforced in memory because their com-
ponent items always co-occur. In contrast, chunk ropa will only be weakly repre-
sented because its component items co-occur less frequently. Moreover, once the 
sequences tupi and piro become represented as single chunks, it becomes possible for 
tupiro to be captured as an even larger chunk (i.e., as the aggregate of tupi and piro). 
Thus, with sufficient exposure, the model will form strong representations of statisti-
cally coherent units of information (e.g., tupiro) and distinguish them from weakly 
represented part-words (e.g., ropado). Statistical relations among items are not 
retained in memory over time—only the chunks.
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Several studies have suggested that adults’ SL is best accounted for by chunking 
models (Fiser & Aslin, 2002a; Giroux & Rey, 2009; Orbán, Fiser, Aslin, & Lengyel, 
2008; Perruchet & Poulin-Charronnat, 2012), but others have provided evidence 
that statistical TP-learning models may often provide a better fit for adult perfor-
mance in SL tasks (Endress & Langus, 2017; Endress & Mehler, 2009). Moreover, 
it remains unknown which type of model best accounts for infants’ SL 
performance.

We addressed the question of whether statistical or chunking was the best account 
of infant sequence learning in three experiments with 8-month-olds (Slone & 
Johnson, 2018). In the first experiment, infants were familiarized with five-item 
sequences for 5 minutes. Sequences were constructed such that certain items were 
shared across units (see Fig. 2.4a). Following habituation, infants were tested for 
recognition of a familiar triplet (tantamount to a word in the Saffran et al., 1996, 

Fig. 2.4  Schematic depiction of familiarization and test sequences in experiments testing statisti-
cal vs. chunking models (see text for details). Numbers above adjacent shapes represent TPs during 
familiarization. Familiarization sequences are seen at the top in each panel and test sequences at 
the bottom. Brackets below shapes indicate the unit structure of the familiarization sequences. (a) 
Illusory triplet, (b) embedded pair, (c) embedded pair with increased exposure. (Adapted from 
Slone and Johnson (2018))
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study), a part-sequence (triplet), and an “illusory” triplet, composed of two pairs of 
items that had high TPs but had not been seen together. We reasoned that if infants 
had learned a chunk (the triplet) during familiarization, they would recognize the 
triplet when seen in isolation at test, but not the illusory triplet or the part-sequence. 
If infants recognized the illusory triplet, however, this would support statistical 
models, because the TPs of the familiar and illusory triplets were identical. The first 
prediction was supported, in line with chunking models.

In the second experiment, infants were familiarized with five-item sequences 
composed of one unique triplet and one unique pair (no shared items; see Fig. 2.4b). 
At test, infants viewed a familiar pair, a part-sequence (pair), and an “embedded 
pair,” composed of items that were part of the triplet. We reasoned that infant look-
ing at test would reveal whether they formed a triplet chunk that excluded the 
embedded pair, consistent with chunking models: recognition of the familiar pair 
but not the part-sequence or embedded pair. This prediction was also supported, 
again in line with chunking models.

Finally, in a third experiment, we asked if we might capture a point in time dur-
ing familiarization when infants had learned TPs among adjacent items but not yet 
formed full chunks. We did this with a condition testing for recognition of embed-
ded pairs, as in the previous experiment, but now employing twice the numbers of 
items and units: two unique triplets and two unique pairs, comprising 10 items in 
total (see Fig. 2.4c). Exposure time was kept the same, however, requiring infants to 
track more relations among items and thus perhaps impairing chunk formation. In 
support of this prediction and in contrast to the second experiment, infants in the 
third study appeared to recognize both familiar and embedded pairs, evidence that 
infants learned TPs between adjoining items, but exposure time had been insuffi-
cient for learning chunks of triplets. Taken together, these results inform the nature 
of infants’ SL: As a first step in sequence learning, TPs between items are acquired, 
and then chunks are learned from the accumulation of TP-linked pairs. But whether 
TPs are immediately discarded may depend on the learning requirements in context 
(cf. Endress & Langus, 2017).

�Conclusions and Broader Implications

Results of statistical learning studies can provide important constraints for theories 
of cognitive development, in particular computational models of associative learn-
ing in developmental disorders (Tovar, Westermann, & Torres, 2018), cross-
situational/multimodal computational models of language acquisition (Monaghan, 
2017), and Bayesian computational models of category learning (Tenenbaum, 
Kemp, Griffiths, & Goodman, 2011). Yet many models of infant cognition do not 
take account of possible effects of stimulus modality on learning or possible 
constraints in infant attention, memory, and learning capacity (e.g., Franz & Triesch, 
2010; Rogers, Rakison, & McClelland, 2004; Tenenbaum et al., 2011).
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In sum, much remains to be discovered with respect to infants’ SL, despite 
important progress in our understanding of SL as a vital part of language acquisition 
and as a window into the nature of some developmental disabilities. For example, 
links between infants’ SL and abstract rule learning remain unexplored but may 
involve comparison processes between items and relations (see Chap. 5). In addi-
tion, neural processes that give rise to statistical learning are becoming understood 
as interactions between the declarative and nondeclarative memory systems of the 
brain (Batterink, Paller, & Reber, 2019), but little is known about how these interac-
tions develop early in life. Nor is the developmental time course of SL in individuals 
well understood (Siegelman & Frost, 2015). Finally, an important question con-
cerns the role of SL in infants’ learning of real-world events. For example, when 
children begin to learn relations between objects, these may become chunked into a 
unit of “causal action” and associated with a label (e.g., a verb). Evidence for this 
and other possible contributions of SL to cognitive development await future study.

References

Abla, D., Katahira, K., & Okanoya, K. (2008). On-line assessment of statistical learning by event-
related potentials. Journal of Cognitive Neuroscience, 20, 952–964. https://doi.org/10.1162/
jocn.2008.20058

Abla, D., & Okanoya, K. (2009). Visual statistical learning of shape sequences: An ERP study. 
Neuroscience Research, 64, 185–190. https://doi.org/10.1016/j.neures.2009.02.013

Addyman, C., & Mareschal, D. (2013). Local redundancy governs infants’ spontaneous orient-
ing to visual-temporal sequences. Child Development, 84, 1137–1144. https://doi.org/10.1111/
cdev.1206

Aslin, R.  N., & Newport, E.  L. (2012). Statistical learning: From acquiring specific items to 
forming general rules. Current Directions in Psychological Science, 21, 170–176. https://doi.
org/10.1177/0963721412436806

Aslin, R. N., & Newport, E. L. (2014). Distributional language learning: Mechanisms and mod-
els of category formation. Language Learning, 64: Cognitive Neuroscience Supplement, 2, 
86–105. https://doi.org/10.1111/lang.12074

Aslin, R.  N., Saffran, J.  R., & Newport, E.  L. (1998). Computation of conditional prob-
ability statistics by 8-month-old infants. Psychological Science, 9, 321–324. https://doi.
org/10.1111/1467-9280.00063

Baker, C.  I., Olson, C.  R., & Behrmann, M. (2004). Role of attention and perceptual group-
ing in visual statistical learning. Psychological Science, 15, 460–466. https://doi.
org/10.1111/j.0956-7976.2004.00702.x

Batterink, L. J., Paller, K. A., & Reber, P. J. (2019). Understanding the neural bases of implicit 
and statistical learning. Topics in Cognitive Science, 11, 482–503. https://doi.org/10.1111/
tops/12420

Bayley, N. (2005). Bayley scales of infant and toddler development-III. San Antonio, TX: Pearson.
Bulf, H., Johnson, S. P., & Valenza, E. (2011). Visual statistical learning in the newborn infant. 

Cognition, 121, 127–132. https://doi.org/10.1016/j.cognition.2011.06.010
Cashon, C. H., Ha, O. R., Graf Estes, K., Saffran, J. R., & Mervis, C. B. (2016). Infants with 

Williams syndrome detect statistical regularities in continuous speech. Cognition, 154, 165–
168. https://doi.org/10.1016/j.cognition.2016.05.009

Chomsky, N. A. (1965). Aspects of a theory of syntax. Cambridge, MA: MIT Press.

2  Mechanisms of Statistical Learning in Infancy

https://doi.org/10.1162/jocn.2008.20058
https://doi.org/10.1162/jocn.2008.20058
https://doi.org/10.1016/j.neures.2009.02.013
https://doi.org/10.1111/cdev.1206
https://doi.org/10.1111/cdev.1206
https://doi.org/10.1177/0963721412436806
https://doi.org/10.1177/0963721412436806
https://doi.org/10.1111/lang.12074
https://doi.org/10.1111/1467-9280.00063
https://doi.org/10.1111/1467-9280.00063
https://doi.org/10.1111/j.0956-7976.2004.00702.x
https://doi.org/10.1111/j.0956-7976.2004.00702.x
https://doi.org/10.1111/tops/12420
https://doi.org/10.1111/tops/12420
https://doi.org/10.1016/j.cognition.2011.06.010
https://doi.org/10.1016/j.cognition.2016.05.009


schrist3@swarthmore.edu

26

Christiansen, M. H., & Curtin, S. (1999). Transfer of learning: Rule acquisition or statistical learning? 
Trends in Cognitive Sciences, 3, 289–290. https://doi.org/10.1016/S1364-6613(99)01356-X

Coull, J. T. (1998). Neural correlates of attention and arousal: Insights from electrophysiology, 
functional neuroimaging and psychopharmacology. Progress in Neurobiology, 55, 343–361. 
https://doi.org/10.1016/S0301-0082(98)00011-2

De Haan, M. (2007). Infant EEG and event-related potentials. London, UK: Psychology Press.
Ellis, E. M., Gonzalez, M. R., & Deák, G. O. (2014). Visual prediction in infancy: What is the 

association with later vocabulary? Language Learning and Development, 10, 36–50. https://
doi.org/10.1080/15475441.2013.799988

Elman, J.  L. (1990). Finding structure in time. Cognitive Science, 14, 179–211. https://doi.
org/10.1207/s15516709cog1402_1

Endress, A., & Mehler, J.  (2009). The surprising power of statistical learning: When fragment 
knowledge leads to false memories of unheard words. Journal of Memory and Language, 60, 
351–367. https://doi.org/10.1016/j.jml.2008.10.003

Endress, A. D., & Langus, A. (2017). Transitional probabilities count more than frequency, but 
might not be used for memorization. Cognitive Psychology, 92, 37–64. https://doi.org/10.1016/j.
cogpsych.2016.11.004

Fiser, J., & Aslin, R. N. (2002a). Statistical learning of higher-order temporal structure from visual 
shape sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 
458–467. https://doi.org/10.1037//0278-7393.28.3.458

Fiser, J., & Aslin, R.  N. (2002b). Statistical learning of new visual feature combinations by 
infants. Proceedings of the National Academy of Sciences (USA), 99, 15822–15826. https://
doi.org/10.1073/pnas.232472899

Fougeron, C., & Keating, P. A. (1997). Articulatory strengthening at edges of prosodic domains. 
Journal of the Acoustical Society of America, 101, 3728–3740. https://doi.org/10.1121/1.418332

Franz, A., & Triesch, J.  (2010). A unified computational model of the development of object 
unity, object permanence, and occluded object trajectory perception. Infant Behavior and 
Development, 33, 635–653. https://doi.org/10.1016/j.infbeh.2010.07.018

French, R. M., Addyman, C., & Mareschal, D. (2011). TRACX: A recognition-based connection-
ist framework for sequence segmentation and chunk extraction. Psychological Review, 118, 
614–636. https://doi.org/10.1037/a0025255

Frost, R., Armstrong, B.  C., Siegelman, N., & Christiansen, M.  H. (2015). Domain generality 
versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 
19, 117–125.

Gerken, L. (2006). Decisions, decisions: Infant language learning when multiple generalizations 
are possible. Cognition, 98, B67–B74. https://doi.org/10.1016/j.cognition.2005.03.003

Gerken, L., Dawson, C., Chatila, R., & Tenenbaum, J. (2015). Surprise! Infants consider possible 
bases of generalization for a single input example. Developmental Science, 18, 80–89. https://
doi.org/10.1111/desc.12183

Gibson, E.  J., & Gibson, J.  J. (1955). Perceptual learning: Differentiation or enrichment? 
Psychological Review, 62, 32–41. https://doi.org/10.1037/h0048826

Giroux, I., & Rey, A. (2009). Lexical and sublexical units in speech perception. Cognitive Science, 
33, 260–272. https://doi.org/10.1111/j.1551-6709.2009.01012.x

Gómez, R. L., & Gerken, L. (2000). Infant artificial language learning and language acquisition. 
Trends in Cognitive Sciences, 4, 178–186. https://doi.org/10.1016/S1364-6613(00)01467-4

Graf Estes, K., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to 
newly segmented words? Statistical segmentation and word learning. Psychological Science, 
18, 254–260. https://doi.org/10.1111/j.1467-9280.2007.01885.x

Gredebäck, G., Johnson, S.  P., & von Hofsten, C. (2010). Eye tracking in infancy research. 
Developmental Neuropsychology, 35, 1–19. https://doi.org/10.1080/87565640903325758

Hasson, U. (2016). The neurobiology of uncertainty: Implications for statistical learning. 
Philosophical Transactions of the Royal Society B, 372, 20160048. https://doi.org/10.1098/
rstb.2016.0048

S. P. Johnson

https://doi.org/10.1016/S1364-6613(99)01356-X
https://doi.org/10.1016/S0301-0082(98)00011-2
https://doi.org/10.1080/15475441.2013.799988
https://doi.org/10.1080/15475441.2013.799988
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1016/j.jml.2008.10.003
https://doi.org/10.1016/j.cogpsych.2016.11.004
https://doi.org/10.1016/j.cogpsych.2016.11.004
https://doi.org/10.1037//0278-7393.28.3.458
https://doi.org/10.1073/pnas.232472899
https://doi.org/10.1073/pnas.232472899
https://doi.org/10.1121/1.418332
https://doi.org/10.1016/j.infbeh.2010.07.018
https://doi.org/10.1037/a0025255
https://doi.org/10.1016/j.cognition.2005.03.003
https://doi.org/10.1111/desc.12183
https://doi.org/10.1111/desc.12183
https://doi.org/10.1037/h0048826
https://doi.org/10.1111/j.1551-6709.2009.01012.x
https://doi.org/10.1016/S1364-6613(00)01467-4
https://doi.org/10.1111/j.1467-9280.2007.01885.x
https://doi.org/10.1080/87565640903325758
https://doi.org/10.1098/rstb.2016.0048
https://doi.org/10.1098/rstb.2016.0048


schrist3@swarthmore.edu

27

Hauser, M. D., Newport, E. L., & Aslin, R. N. (2001). Segmentation of the speech stream in a non-
human primate: Statistical learning in cotton-top tamarins. Cognition, 78, B53–B64. https://
doi.org/10.1016/S0010-0277(00)00132-3

Hunt, R. H., & Aslin, R. N. (2001). Statistical learning in a serial reaction time task: Access to 
separable statistical cues by individual learners. Journal of Experimental Psychology: General, 
130, 658–680. https://doi.org/10.1037//0096-3445.130.4.658

Jeste, S.  S., Kirkham, N., Senturk, D., Hasenstab, K., Sugar, C., Kupelian, C., et  al. (2015). 
Electrophysiological evidence of heterogeneity in visual statistical learning in young children 
with ASD. Developmental Science, 18, 90–105. https://doi.org/10.1111/desc.12188

Johnson, M. J., & Morton, J. (1991). Biology and cognitive development: The case of face recogni-
tion. Oxford: Blackwell.

Karuza, E. A., Newport, E. L., Aslin, R. N., Starling, S. J., Tivarus, M. E., & Bavelier, D. (2013). 
The neural correlates of statistical learning in a word segmentation task: An fMRI study. Brain 
and Language, 127, 46–54. https://doi.org/10.1016/j.bandl.2012.11.007

Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2012). The Goldilocks effect: Human infants allocate 
attention to visual sequences that are neither too simple nor too complex. PLoS One, 7, e36399. 
https://doi.org/10.1371/journal.pone.0036399

Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2014). The Goldilocks effect in infant auditory atten-
tion. Child Development, 85, 1795–1804. https://doi.org/10.1111/cdev.12263

Kidd, E., & Arciuli, J. (2016). Individual differences in statistical learning predict children’s com-
prehension of syntax. Child Development, 87, 184–193. https://doi.org/10.1111/cdev.12461

Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: 
Evidence for a domain general learning mechanism. Cognition, 83, B35–B42. https://doi.
org/10.1016/S0010-0277(02)00004-5

Kirkham, N. Z., Slemmer, J. A., Richardson, D. C., & Johnson, S. P. (2007). Location, location, 
location: Development of spatiotemporal sequence learning in infancy. Child Development, 78, 
1559–1571. https://doi.org/10.1111/j.1467-8624.2007.01083.x

Krogh, L., Vlach, H. A., & Johnson, S. P. (2013). Statistical learning across development: Flexible 
yet constrained. Frontiers in Psychology, 3, 598. https://doi.org/10.3389/fpsyg.2012.00598

Lany, J., & Saffran, J. R. (2010). From statistics to meaning: Infants’ acquisition of lexical catego-
ries. Psychological Science, 21, 284–291. https://doi.org/10.1177/0956797609358570

Leslie, A. M. (1997). Pretense and representation: The origins of “theory of mind”. Psychological 
Review, 94, 412–426. https://doi.org/10.1037/0033-295X.94.4.412

Lewkowicz, D. J. (2004). Perception of serial order in infants. Developmental Science, 7, 175–184. 
https://doi.org/10.1111/j.1467-7687.2004.00336.x

Lewkowicz, D.  J. (2008). Perception of dynamic and static audiovisual sequences. Child 
Development, 79, 1538–1554. https://doi.org/10.1111/j.1467-8624.2008.01204.x

Lew-Williams, C., Pelucchi, B., & Saffran, J.  R. (2011). Isolated words enhance statisti-
cal language learning in infancy. Developmental Science, 14, 1323–1329. https://doi.
org/10.1111/j.1467-7687.2011.01079.x

Lew-Williams, C., & Saffran, J. R. (2012). All words are not created equal: Expectations about 
word length guide infant statistical learning. Cognition, 122, 241–246. https://doi.org/10.1016/j.
cognition.2011.10.007

Lieberman, M. D., Chang, G. Y., Chiao, J., Bookheimer, S. Y., & Knowlton, B. J. (2004). An event-
related fMRI study of artificial grammar learning with a balanced chunk strength design. Journal 
of Cognitive Neuroscience, 16, 427–438. https://doi.org/10.1162/089892904322926764

Marcovitch, S., & Lewkowicz, D. J. (2009). Sequence learning in infancy: The independent con-
tributions of conditional probability and pair frequency information. Developmental Science, 
12, 1020–1025. https://doi.org/10.1111/j.1467-7687.2009.00838.x

Marcus, G., Fernandes, K., & Johnson, S. (2007). Infant rule learning facilitated by speech. 
Psychological Science, 18, 387–391. https://doi.org/10.1111/j.1467-9280.2007.01910.x

Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999). Rule learning by seven-month- old 
infants. Science, 283, 77–80. https://doi.org/10.1126/science.283.5398.77

2  Mechanisms of Statistical Learning in Infancy

https://doi.org/10.1016/S0010-0277(00)00132-3
https://doi.org/10.1016/S0010-0277(00)00132-3
https://doi.org/10.1037//0096-3445.130.4.658
https://doi.org/10.1111/desc.12188
https://doi.org/10.1016/j.bandl.2012.11.007
https://doi.org/10.1371/journal.pone.0036399
https://doi.org/10.1111/cdev.12263
https://doi.org/10.1111/cdev.12461
https://doi.org/10.1016/S0010-0277(02)00004-5
https://doi.org/10.1016/S0010-0277(02)00004-5
https://doi.org/10.1111/j.1467-8624.2007.01083.x
https://doi.org/10.3389/fpsyg.2012.00598
https://doi.org/10.1177/0956797609358570
https://doi.org/10.1037/0033-295X.94.4.412
https://doi.org/10.1111/j.1467-7687.2004.00336.x
https://doi.org/10.1111/j.1467-8624.2008.01204.x
https://doi.org/10.1111/j.1467-7687.2011.01079.x
https://doi.org/10.1111/j.1467-7687.2011.01079.x
https://doi.org/10.1016/j.cognition.2011.10.007
https://doi.org/10.1016/j.cognition.2011.10.007
https://doi.org/10.1162/089892904322926764
https://doi.org/10.1111/j.1467-7687.2009.00838.x
https://doi.org/10.1111/j.1467-9280.2007.01910.x
https://doi.org/10.1126/science.283.5398.77


schrist3@swarthmore.edu

28

Mareschal, D., & French, R.  M. (2017). TRACX2: A connectionist autoencoder using graded 
chunks to model infant visual statistical learning. Philosophical Transactions of the Royal 
Society B, 372, 20160057. https://doi.org/10.1098/rstb.2016.0057

Marin, A., Hutman, T., Ponting, C., McDonald, N. M., Dickinson, A., Dapretto, M., et al. (2019). 
Electrophysiological signatures of visual statistical learning in three-month old infants at 
familial and low risk for autism spectrum disorder. Manuscript submitted for publication.

Mayo, J., & Eigsti, I. M. (2012). A comparison of statistical learning in school-aged children with 
high functioning autism and typically developing peers. Journal of Autism and Developmental 
Disorders, 42, 2476–2485. https://doi.org/10.1007/s10803-012-1493-0

McNealy, K., Mazziotta, J. C., & Dapretto, M. (2011). Age and experience shape developmental 
changes in the neural basis of language-related learning. Developmental Science, 14, 1261–
1282. https://doi.org/10.1111/j.1467-7687.2011.01075.x

Miller, G. A., & Selfridge, J. A. (1950). Verbal context and the recall of meaningful material. 
American Journal of Psychology, 63, 176–185. https://doi.org/10.2307/1418920

Monaghan, P. (2017). Canalization of language structure from environmental constraints: A com-
putational model of word learning from multiple cues. Topics in Cognitive Science, 9, 21–34. 
https://doi.org/10.1111/tops.12239

Obeid, R., Brooks, P. J., Powers, K. L., Gillespie-Lynch, K., & Lum, J. A. G. (2016). Statistical 
learning in specific language impairment and autism spectrum disorder: A meta-analysis. 
Frontiers in Psychology, 7, 1245. https://doi.org/10.3389/fpsyg.2016.01245

Orbán, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008). Bayesian learning of visual chunks by 
human observers. Proceedings of the National Academy of Sciences (USA), 105, 2745–2750. 
https://doi.org/10.1073/pnas.0708424105

Perruchet, P., & Poulin-Charronnat, B. (2012). Beyond transitional probability computations: 
Extracting word-like units when only statistical information is available. Journal of Memory 
and Language, 66, 807–818. https://doi.org/10.1016/j.jml.2012.02.010

Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical 
Neurophysiology, 9, 456–479.

Reber, A.  S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and 
Verbal Behavior, 6, 855–863. https://doi.org/10.1016/S0022-5371(67)80149-X

Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: 
General, 118, 219–235. https://doi.org/10.1037/0096-3445.118.3.219

Reeder, P.  A., Newport, E.  L., & Aslin, R.  N. (2013). From shared contexts to syntactic cate-
gories: The role of distributional information in learning linguistic form-classes. Cognitive 
Psychology, 66, 30–54. https://doi.org/10.1016/j.cogpsych.2012.09.001

Rogers, T. T., Rakison, D. H., & McClelland, J. L. (2004). U-shaped curves in development: A 
PDP approach. Journal of Cognition and Development, 1, 137–145. https://doi.org/10.1207/
s15327647jcd0501_14

Romberg, A.  R., & Saffran, J.  R. (2010). Statistical learning and language acquisition. Wiley 
Interdisciplinary Reviews: Cognitive Science, 1, 906–914. https://doi.org/10.1002/wcs.78

Roser, M. E., Aslin, R. N., McKenzie, R., Zahra, D., & Fiser, J. (2015). Enhanced visual statis-
tical learning in adults with autism. Neuropsychology, 29, 163–172. https://doi.org/10.1037/
neu0000137

Saffran, J. R. (2001). Words in a sea of sounds: The output of statistical learning. Cognition, 81, 
149–169. https://doi.org/10.1016/S0010-0277(01)00132-9

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. 
Science, 274, 1926–1928. https://doi.org/10.1126/science.274.5294.1926

Saffran, J.  R., Johnson, E.  K., Aslin, R.  N., & Newport, E.  L. (1999). Statistical learning of 
tone sequences by human infants and adults. Cognition, 70, 27–52. https://doi.org/10.1016/
S0010-0277(98)00075-4

Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 
69, 181–203. https://doi.org/10.1146/annurev-psych-122216-011805

Saffran, J. R., & Wilson, D. P. (2003). From syllables to syntax: Multilevel statistical learning 
by 12-month-old infants. Infancy, 4, 273–284. https://doi.org/10.1207/S15327078IN0402_07

S. P. Johnson

https://doi.org/10.1098/rstb.2016.0057
https://doi.org/10.1007/s10803-012-1493-0
https://doi.org/10.1111/j.1467-7687.2011.01075.x
https://doi.org/10.2307/1418920
https://doi.org/10.1111/tops.12239
https://doi.org/10.3389/fpsyg.2016.01245
https://doi.org/10.1073/pnas.0708424105
https://doi.org/10.1016/j.jml.2012.02.010
https://doi.org/10.1016/S0022-5371(67)80149-X
https://doi.org/10.1037/0096-3445.118.3.219
https://doi.org/10.1016/j.cogpsych.2012.09.001
https://doi.org/10.1207/s15327647jcd0501_14
https://doi.org/10.1207/s15327647jcd0501_14
https://doi.org/10.1002/wcs.78
https://doi.org/10.1037/neu0000137
https://doi.org/10.1037/neu0000137
https://doi.org/10.1016/S0010-0277(01)00132-9
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1016/S0010-0277(98)00075-4
https://doi.org/10.1016/S0010-0277(98)00075-4
https://doi.org/10.1146/annurev-psych-122216-011805
https://doi.org/10.1207/S15327078IN0402_07


schrist3@swarthmore.edu

29

Schonberg, C., Marcus, G. F., & Johnson, S. P. (2018). The roles of item repetition and position 
in infants’ abstract rule learning. Infant Behavior and Development, 53, 64–80. https://doi.
org/10.1016/j.infbeh.2018.08.003

Scott-Van Zeeland, A. A., McNealy, K., Wang, A. T., Sigman, M., Bookheimer, S. Y., & Dapretto, 
M. (2010). No neural evidence of statistical learning during exposure to artificial languages 
in children with autism spectrum disorders. Biological Psychiatry, 88, 345–351. https://doi.
org/10.1016/j.biopsych.2010.01.011

Shafto, C.  L., Conway, C.  M., Field, S.  L., & Houston, D.  M. (2011). Visual sequence learn-
ing in infancy: Domain-general and domain-specific associations with language. Infancy, 17, 
247–271. https://doi.org/10.1111/j.1532-7078.2011.00085.x

Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical per-
spectives and empirical evidence. Journal of Memory and Language, 81, 105–120. https://doi.
org/10.1016/j.jml.2015.02.001

Slone, L. K., & Johnson, S. P. (2015). Infants’ statistical learning: 2- and 5-month-olds’ segmenta-
tion of continuous visual sequences. Journal of Experimental Child Psychology, 133, 47–56. 
https://doi.org/10.1016/j.jecp.2015.01.007

Slone, L. K., & Johnson, S. P. (2018). When learning goes beyond statistics: Infants represent 
visual sequences in terms of chunks. Cognition, 178, 92–102. https://doi.org/10.1016/j.
cognition.2018.05.016

Sobel, D.  M., & Kirkham, N.  Z. (2006). Blickets and babies: The development of causal rea-
soning in toddlers and infants. Developmental Psychology, 42, 1103–1115. https://doi.
org/10.1037/0012-1649.42.6.1103

Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14, 29–56. https://doi.
org/10.1016/0364-0213(90)90025-R

Teinonen, T., Fellman, V., Näätänen, R., Alku, P., & Huotilainen, M. (2009). Statistical language 
learning in neonates revealed by event-related brain potentials. BMC Neuroscience, 10, 21. 
https://doi.org/10.1186/1471-2202-10-21

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: 
Statistics, structure, and abstraction. Science, 331, 1279–1285. https://doi.org/10.1126/
science.1192788

Thiessen, E. D. (2016). What’s statistical about learning? Insights from modelling statistical learn-
ing as a set of memory processes. Philosophical Transactions of the Royal Society B, 372, 
20160048. https://doi.org/10.1098/rstb.2016.0056

Thiessen, E. D., Kronstein, A. T., & Hufnagle, D. G. (2013). The extraction and integration frame-
work: A two-process account of statistical learning. Psychological Bulletin, 139, 792–814. 
https://doi.org/10.1037/a0030801

Thiessen, E. D., & Saffran, J. R. (2003). When cues collide: Use of stress and statistical cues 
to word boundaries by 7- to 9-month-old infants. Developmental Psychology, 39, 706–716. 
https://doi.org/10.1037/0012-1649.39.4.706

Toro, J. M., & Trobalón, J. B. (2005). Statistical computations over a speech stream in a rodent. 
Perception & Psychophysics, 67, 867–875. https://doi.org/10.3758/BF03193539

Tovar, A. E., Westermann, G., & Torres, A. (2018). From altered synaptic plasticity to atypical 
learning: A computational model of Down syndrome. Cognition, 171, 15–24. https://doi.
org/10.1016/j.cognition.2017.10.021

Tummeltshammer, K.  S., & Kirkham, N.  Z. (2013). Learning to look: Probabilistic variation 
and noise guide infants’ eye movements. Developmental Science, 16, 760–771. https://doi.
org/10.1111/desc.12064

Turk-Browne, N.  B. (2012). Statistical learning and its consequences. In M.  D. Dodd & J.  H. 
Flowers (Eds.), The influence of attention, learning, and motivation on visual search (Nebraska 
Symposium on Motivation) (pp. 117–146). New York, NY: Springer.

Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of 
statistical learning: Efficient detection of visual regularities without awareness. Journal of 
Cognitive Neuroscience, 21, 1934–1945. https://doi.org/10.1162/jocn.2009.21131

2  Mechanisms of Statistical Learning in Infancy

https://doi.org/10.1016/j.infbeh.2018.08.003
https://doi.org/10.1016/j.infbeh.2018.08.003
https://doi.org/10.1016/j.biopsych.2010.01.011
https://doi.org/10.1016/j.biopsych.2010.01.011
https://doi.org/10.1111/j.1532-7078.2011.00085.x
https://doi.org/10.1016/j.jml.2015.02.001
https://doi.org/10.1016/j.jml.2015.02.001
https://doi.org/10.1016/j.jecp.2015.01.007
https://doi.org/10.1016/j.cognition.2018.05.016
https://doi.org/10.1016/j.cognition.2018.05.016
https://doi.org/10.1037/0012-1649.42.6.1103
https://doi.org/10.1037/0012-1649.42.6.1103
https://doi.org/10.1016/0364-0213(90)90025-R
https://doi.org/10.1016/0364-0213(90)90025-R
https://doi.org/10.1186/1471-2202-10-21
https://doi.org/10.1126/science.1192788
https://doi.org/10.1126/science.1192788
https://doi.org/10.1098/rstb.2016.0056
https://doi.org/10.1037/a0030801
https://doi.org/10.1037/0012-1649.39.4.706
https://doi.org/10.3758/BF03193539
https://doi.org/10.1016/j.cognition.2017.10.021
https://doi.org/10.1016/j.cognition.2017.10.021
https://doi.org/10.1111/desc.12064
https://doi.org/10.1111/desc.12064
https://doi.org/10.1162/jocn.2009.21131


schrist3@swarthmore.edu

30

Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual 
anticipation triggered by statistical learning. Journal of Neuroscience, 30, 11177–11187. 
https://doi.org/10.1523/JNEUROSCI.0858-10.2010

Wightman, C. W., Shattuck-Hufnagel, S., Ostendorf, M., & Price, P. J. (1992). Segmental durations 
in the vicinity of prosodic phrase boundaries. Journal of the Acoustical Society of America, 91, 
1707–1717. https://doi.org/10.1121/1.402450

Wu, R., Gopnik, A., Richardson, D.  C., & Kirkham, N.  Z. (2011). Infants learn about objects 
from statistics and people. Developmental Psychology, 47, 1220–1229. https://doi.org/10.1037/
a0024023

Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750. https://doi.
org/10.1038/358749a0

S. P. Johnson

https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1121/1.402450
https://doi.org/10.1037/a0024023
https://doi.org/10.1037/a0024023
https://doi.org/10.1038/358749a0
https://doi.org/10.1038/358749a0


schrist3@swarthmore.edu

31© Springer Nature Switzerland AG 2020
J. B. Childers (ed.), Language and Concept Acquisition from Infancy Through 
Childhood, https://doi.org/10.1007/978-3-030-35594-4_3

Chapter 3
How Multiple Exemplars Matter for Infant 
Spatial Categorization

Marianella Casasola and Youjeong Park

Abstract  The goal of the present chapter is to outline how infants’ experience with 
multiple exemplars contributes to their ability to form representations of the small-
scale spatial relations, such as above, below, between, inside, or on top. Although 
infants discriminate between changes in the spatial arrangement of objects early in 
development, this skill undergoes significant advances throughout infancy. In par-
ticular, the ways in which infants benefit from multiple exemplars evolve with the 
development of their spatial skills and their categorization skills. We outline theo-
retical views that inform these developmental changes and point to the possible 
mechanisms that may underlie how infants’ experience with multiple exemplars 
contributes to their ability to form abstract representations of spatial relations. We 
also consider how manipulating the number and type of exemplars is an important 
tool for understanding the development of infant spatial categorization.

To quote a familiar adage, variety is the spice of life. Diverse experiences promote 
engagement, boost enjoyment, and maintain interest. This same mantra can be 
applied to learning. Learning contexts that include multiple examples facilitate gen-
eralization to new contexts more effectively than those that include only a single 
example (e.g., Gentner, Loewenstein, & Thompson, 2003). The goal of the present 
chapter is to evaluate how experience with multiple exemplars contributes to infants’ 
ability to form representations of the spatial relations between and among objects, 
relations such as above, below, between, inside, or on top. From their first days, 
infants show that they can discriminate the spatial layout of the objects in their envi-
ronment (Antell, Caron, & Myers, 1985). For example, neonates can generalize 
across changes in the absolute location of one object relative to the left versus right 
of another, provided the left-right spatial arrangement between the two objects is 
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maintained (Gava, Valenza, & Turati, 2009). By 6 months, infants form abstract 
categorical representations of particular spatial relations, generalizing the spatial 
relation from a familiarized set of objects to novel ones (Casasola, Cohen, & 
Chiarello, 2003; Hespos & Spelke, 2004; Quinn, Cummins, Kase, Martin, & 
Weissman, 1996). Nonetheless, infants’ ability to form categorical representations 
of spatial relations continues to develop throughout infancy (Casasola, 2008, 2017; 
Quinn, 2003, 2005, 2007), and studies manipulating the number and type of exem-
plars presented to infants in the spatial categorization task have been pivotal in 
documenting the nature and scope of this development (Casasola & Park, 2013; 
Hespos & Piccin, 2009; Quinn, Adams, Kennedy, Shettler, & Wasnik, 2003; Quinn, 
Polly, Furer, & Dobson, 2002).

Prior studies of infant spatial categorization show that infants’ experience with 
different exemplars plays a central role in the development of this skill in at least 
two ways. First, experimental tasks of infant spatial categorization often rely on 
presenting infants with multiple exemplars of a spatial relation. The prediction is 
that if infants can attend to the commonality of the spatial relation across the distinct 
examples of the relation, they will generalize the experience with the familiarization 
of the spatial relations to a novel instance of the spatial relation and show longer 
looking to a novel than a familiarized spatial relation. Importantly, the exemplars 
used across studies of infant spatial categorization can differ drastically in the type 
and number of exemplars they include. Whereas some studies depict the same 
objects during familiarization with the only changes across exemplars in the loca-
tion of a figure object in relation to a referent, such as a bar (e.g., Quinn, 1994), 
others present exemplars in which the target relation is depicted by a diverse array 
of objects depicting that relation (e.g., McDonough, Choi, & Mandler, 2003). This 
difference in the number and type of exemplars across studies has yielded important 
insights into not only which spatial categories infants form at a given age but also 
how they form these categories; it has made it possible to trace developmental 
changes in this skill (Casasola & Cohen, 2002; Quinn et al., 1996, 2003). Infants’ 
experience with multiple exemplars also has been important to infant spatial catego-
rization because, under some circumstances, varying the number or type of famil-
iarization exemplars can promote infants’ ability to form a spatial category that they 
may not otherwise form (Casasola, 2005; Casasola & Park, 2013; Hespos & Piccin, 
2009; Park & Casasola, 2015; Park, Casasola, & Kim, 2012; Quinn et al., 2002). 
Specifically, in some cases, increasing the number of exemplars facilitates spatial 
categorization (e.g., Casasola & Park, 2013), but in other cases, limiting the number 
of exemplars does so (Casasola, 2005). Infants’ ability to benefit from, or be hin-
dered by, the number and type of familiarization exemplars provides a window into 
the developmental processes that contribute to advances in infants’ categorization of 
spatial relations.

The present chapter discusses how infants’ experience with multiple exemplars 
contributes to their ability to form abstract representations of spatial relations. We 
consider multiple exemplars, both as a tool for testing infant spatial categorization 
and as the spice that can promote generalization, when infants have the skills to 
benefit from increased variability in the exemplars. In the first section of the chapter, 
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we argue that infants’ ability to form a categorical representation of a spatial relation 
offers an ideal venue for understanding how infants encode and generalize rela-
tional information. We also outline how infant categorization of spatial relations 
intersects with other cognitive skills, such as their categorization of objects, ana-
logical reasoning, and their acquisition of spatial language, and propose that under-
standing advances in infant spatial categorization may serve to inform our 
understanding of these other skills. We next discuss the use of multiple examples in 
tasks of infant spatial categorization and note how differences in the number of 
exemplars as well as the perceptual similarity of the exemplars used across studies 
have served to highlight the conceptual hurdles that infants must overcome to form 
abstract categorical representations of spatial relations. We outline possible mecha-
nisms of facilitation and link these mechanisms to theoretical accounts of infant 
spatial categorization, specifically, and relational learning, more broadly.

As we conclude, we will address possible directions for future study, including 
identifying other methodological approaches that may be useful in understanding 
how infants’ spatial categorization and other types of relational learning develop 
over the first year. We also will consider the degree to which our understanding of 
how multiple exemplars shape spatial categorization can be extended to bolster our 
understanding of other types of cognitive skills, including those that are both spatial 
and those that are nonspatial.

�Why Spatial Relations?

Studying how infants learn to form categorical representations of spatial relations 
informs our understanding of their ability to look beyond the objects in their envi-
ronment. Infant spatial categorization has often been situated within the larger 
domain of spatial cognition (Newcombe & Huttenlocher, 2000). Infants’ discrimi-
nation and categorization of the spatial configuration between or among objects 
early in life contribute to a number of later-emerging spatial skills, such as map 
reading, navigation, and reorientation. It also falls under the umbrella of how infants 
parse and categorize dynamic events and overlaps with studies that examine other 
aspects of motion events, such as infants’ discrimination and categorization of the 
manner and path of motion (e.g., a girl skipping across the street) or the figure and 
ground objects in these events (Göksun, Hirsh-Pasek, & Golinkoff, 2010; Konishi, 
Pruden, Golinkoff, & Hirsh-Pasek, 2016; Pruden, Roseberry, Göksun, Hirsh-Pasek, 
& Golinkoff, 2013; Pulverman, Song, Hirsh-Pasek, Pruden, & Golinkoff, 2013; 
Song, Pruden, Golinkoff, & Hirsh-Pasek, 2016). Given the focus of infants’ gener-
alization of spatial relations, this skill easily connects to the rich literature on 
infants’ categorization of objects. Developmental changes in infants’ categorization 
of spatial relation do parallel their ability to do so with objects, suggesting overlap 
in the processes that infants recruit in forming each type of category (Quinn, 2003; 
Rakison & Oakes, 2003) and suggesting shared mechanisms across spatial and non-
spatial domains.
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Infants’ ability to form an abstract representation of spatial relations has been 
linked to other cognitive skills. In particular, infants’ manipulation of objects has 
been related to their representations of spatial relations in studies that examine 
developmental changes in infants’ skill in fitting objects through openings (Örnkloo 
& von Hofsten, 2007; Oudgenoeg-Paz, Boom, Volman, & Leseman, 2016; 
Oudgenoeg-Paz, Leseman, & Volman, 2015). Infants’ mastery in successfully 
inserting an object into the appropriate opening has been attributed to gains in their 
ability to accurately match an object’s shape to its corresponding negative space in 
a shape sorter and appreciate the relation between shape and opening (Örnkloo & 
von Hofsten, 2007; Shutts et al., 2009). Thus, infants’ ability to attend to spatial 
relations has been relevant to work that intersects with motor development and 
infants’ play with objects. In addition, infant spatial categorization has been dis-
cussed in relation to young infants’ ability to discriminate between physically pos-
sible and impossible dynamic events (e.g., Baillargeon, 2004). Theoretical accounts 
of infants’ physical reasoning have outlined a progression dictated by the type of 
spatial events that depict the violation in the physical interaction between two 
objects. Infants display distinct developmental timelines for responding to a particu-
lar physical violation across containment, support, and occlusion events (Baillargeon 
& Wang, 2002; Hespos & Baillargeon, 2001; Wang & Baillargeon, 2008), intersect-
ing with work on infant categorization of spatial relation that also notes distinct 
developmental timelines for when they form a spatial category of particular spatial 
relations (to be discussed in more detail below).

Furthermore, which types of spatial relations infants can organize into categories 
has been the relevant to studies of early verb learning as well as infants’ acquisition 
of locative terms, such as “in,” and “on.” A number of studies have documented 
infants’ sensitivity to manner, and path of motion predicts their later acquisition of 
verbs, supporting arguments that infants’ representations of these events contribute 
to a conceptual foundation for relational language (Göksun et al., 2010; Pulverman 
et al., 2013; Song et al., 2016). Similarly, a number of studies have linked infants’ 
stacking or nesting of objects to their exposure to spatial language (Casasola, 
Bhagwat, Doan & Love, 2017) or their later acquisition of spatial language, particu-
larly locative terms (e.g., Marcinowski & Campbell, 2017), linking infants’ motor 
experience, particularly their manipulation of objects into specific spatial configura-
tions, and their spatial vocabulary and spatial skills (see also Oudgenoeg-Paz 
et al., 2015).

Finally, infants’ ability to discriminate and categorize spatial relations has been 
argued to be related to their analogical reasoning (Ferry, Hespos, & Gentner, 2015; 
Park & Casasola, 2017). In particular, infants’ ability to generalize across different 
instantiations of a spatial relation can be argued to be a type of relational learning. 
To form a perceptual category of a spatial relation, for example, infants must attend 
to the consistency of the spatial arrangement between or among specific objects, 
despite changes in absolute location. To form an abstract representation, infants 
must also do so across changes in the objects depicting the spatial relation, docu-
menting that they recognize the spatial relation independent of specific objects.
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Infant spatial categorization offers a number of advantages for studying the ori-
gins and development of relational learning. We will first outline some of these 
advantages and then later provide more details of the studies that support these 
claims. First, this categorization is evident, in some form, even in neonates, and 
may possibly be one of the first types of relational learning documented in infants. 
Its early emergence provides a unique opportunity to explore how very young 
infants attend to these types of relations in their environment. Second, this skill 
undergoes significant and rapid development in the first year. In particular, by 
about 6 months of age, infants become significantly more adept at recognizing the 
equivalence of a spatial relation across different examples of the relation, although 
this ability continues to develop into the second year. This developmental progres-
sion in how easily infants can generalize a spatial relation across changes in objects 
makes this skill especially well-suited for appreciating how multiple exemplars 
can play a role in relational learning, particularly in infancy.

In sum, infant spatial categorization intersects with both spatial and nonspatial 
skills as well as object cognition, event perception, and relational learning. As such, 
documenting the processes infants recruit to form abstract representations of spatial 
relations and investigating the role of multiple exemplars in shaping these processes 
may yield insights into a broad array of cognitive skills.

�Do Infants Require Multiple Exemplars for Forming Spatial 
Categories?

Infants’ daily experiences provide them with ample exposure to varied examples of 
spatial relations. However, we now know from the empirical work that has been 
done that the degree to which infants benefit from these experiences depends on an 
array of factors, including the spatial relation in question, the characteristics and 
familiarity of the objects depicting the spatial relation, the structure of the categori-
zation task, and, of course, the perceptual and cognitive abilities of the infant. Over 
their first year, infants become more adept at forming spatial categories across 
increasingly diverse examples of the specific spatial relation. Although a 1-month-
old infant may not appreciate that a cup in the sink depicts the same containment 
relation as carrot sticks in a bowl, infants of 6 months of age can do so, generalizing 
a containment relation across distinct pairs of objects (e.g., Casasola et al., 2003). 
However, the 1-month-old can form a spatial category of left-right spatial relations 
if it is depicted by a specific pair of perceptually simple objects.

Understanding the progression by which infants learn to form spatial categories 
sets the stage for appreciating how experience with multiple exemplars may shape 
this development. First, when it comes to forming spatial categories, not all spatial 
relations are equivalent. Infants form categories of particular spatial relations earlier 
in development than others. For example, as we have mentioned, neonates form a 
perceptual category of left-right relations (Antell & Caron, 1985; Gava et al., 2009). 
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There is also evidence that young infants can mentally subdivide small-scale spaces 
even in the absence of a midline, discriminating between objects situated to the left 
as distinct from those situated on the right. This result suggests a primacy to how we 
organize space along a vertical axis (Quinn, 2012). By 4 months, infants provide 
evidence for the formation of categories of other spatial relations, such as above and 
below (Quinn, 1994), and by 6 months, this skill has expanded to include the spatial 
relations of containment, between, and those that depict a tight-fit relation between 
two objects (Casasola et al., 2003; Hespos & Spelke, 2004; Quinn, Norris, Pasko, 
Schmader, & Mash, 1999). Finally, by 8 months, infants provide the first evidence 
that they can form a spatial category of support relations (Park et al., 2012; Park & 
Casasola, 2013). Thus, infants form categories of some types of spatial relations 
earlier in development than others. Which spatial relations infants first categorize 
has been attributed to core concepts of events (e.g., Hespos & Spelke, 2004), biases 
in perceptual and cognitive systems (Quinn, 2012), their own experience in manipu-
lating objects (Casasola et al., 2017), or those that are linguistically encoded by the 
infants’ language (Choi & Bowerman, 1991).

An important caveat, however, is that infants’ ability to form a spatial category in 
one study should not be taken as evidence that they will successfully do so in all other 
contexts. Consider, for example, results reported by Casasola et  al. (2003) with 
infants of 6 months and those reported by Rigney and Wang (2015) with infants of 
8 months. Whereas Casasola et al. (2003) found that infants of 6 months formed a 
category of containment events as distinct from support, Rigney and Wang (2015) 
found that infants failed to do so when the test events contrasted containment with 
occlusion (but did form the spatial category when the novel relation was support, 
replicating Casasola et  al.). Similarly, Quinn et  al. (1999) found that infants of 
6–7 months could form a category of the spatial relation of between when familiar-
ized with exemplars of this spatial relation in which the two lines were always in the 
same orientation (either always vertical or always horizontal). However, when infants 
were familiarized to two lines in a distinct orientation (e.g., vertical), they no longer 
had formed the spatial category of between when tested with the referent frame in a 
novel orientation (e.g., horizontal) (Quinn, Doran, & Papafragou, 2011). At slightly 
older ages, 11 months for Rigney and Wang and 9–10 months for Quinn, Doran, and 
Papafragou, infants were able to form each spatial category regardless of which spa-
tial relation was depicted as the novel spatial relation and whether the orientation of 
the lines varied from familiarization to test. In sum, at younger ages, infant success 
in one spatial categorization task may not extend to a task that depicted more chal-
lenging or even simply distinct conditions; at older ages, they become more resilient 
in their spatial categorization across a wider array of conditions.

Developmental changes in infant spatial categorization are evident not only in 
which spatial relations they can organize into a category but also in the breadth of 
their generalizations when tested on their categorization of a spatial relation. As we 
have noted, infants progress from forming spatial categories across exemplars that 
share a high level of similarity to forming ones in which there is minimal similarity 
across the exemplars. That is, they advance from forming spatial categories that are 
more perceptually based to ones that are increasingly abstract. To illustrate this 
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point, compare the scope of a spatial category formed by young versus older infants. 
In the case of very young infants, the only difference across exemplars in several 
studies was in the specific location of one or both of the objects (Antell et al., 1985; 
Gava et al., 2009; Quinn, 1994). Because the objects remained constant across all 
phases of the experiment, we could predict that any generalization would be narrow 
in scope and that the category formed would be a perceptual one (e.g., Gava et al., 
2009). At the other end of the continuum are studies in which the spatial events 
include more perceptually complex objects, such as those that infants may encoun-
ter in their everyday interactions, objects such as a cup, bowl, or toy rather than the 
monochromatic geometric shapes or symbols presented to younger infants (see 
Fig. 3.1). In these studies, the objects also varied across trials, creating a more dif-
ficult categorization task (Casasola & Ahn, 2017; Choi, 2006; McDonough, Choi, & 
Mandler, 2003). To form the spatial category with these more variable exemplars, 
infants had to generalize the spatial relation across changes in the objects, a skill 
that they do not demonstrate until about 5–6 months of age and even so, only with 
particular spatial relations, such as containment, above versus below, and, in some 
cases, tight-fit (Casasola et al., 2003; Hespos & Spelke, 2004; Quinn et al., 1996). 
When infants recognize a spatial relation independent of specific objects, they are 
argued to have formed the abstract representation of that spatial relation.

In the next section, we review the methods for testing infants’ spatial categori-
zation, with particular attention to the use of multiple exemplars in these tasks to 
test the spatial categories that infants form. In particular, we note how the stimuli 
and structure of a particular experiment may shape whether infants form a spatial 
category.

Fig. 3.1  Adaptation of stimuli used in distinct studies of infant spatial categorization
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�Procedures for Testing Infants’ Categorization of Spatial 
Relations

As demonstrated by the contrasting results reported by Rigney and Wang (2015) 
and Casasola et al. (2003), the stimuli and structure of the spatial categorization task 
can have a significant impact on whether infants provide evidence of forming a 
particular spatial category. Most studies probing whether infants can organize the 
spatial configuration between objects into a category have used infant looking time 
as the dependent variable. Studies also typically include several examples of the 
target relation as part of the spatial categorization task. Once infants have met a 
criterion of decreased looking during a habituation phase or viewed a fixed number 
of familiarization trials, they are presented with test events that depict the familiar-
ized spatial relation as well as a novel spatial relation, one not seen during familiar-
ization. Typically, infants tested in a habituation task are expected to demonstrate 
longer looking to the novel than familiarized spatial relation, but in studies that use 
a familiarization procedure, they can show a familiarity preference for the familiar-
ized spatial relation. Infants’ preference for one type of event over the other during 
the test phase is taken as evidence that they have formed a categorical representation 
of the spatial relation. This approach has been used successfully with a wide range 
of infant ages, from neonates to young children of 36 months, and with a diverse 
array of spatial categories, including above, below, left, right, between, contain-
ment, support, and tight-fit (Antell et al., 1985; Behl-Chadha & Eimas, 1995; Choi, 
2006; Gava et al., 2009; Hespos & Spelke, 2004; Quinn, 1994; Quinn et al., 1999).

Despite sharing these commonalities in general structure, studies of infant spatial 
categorization have differed, often drastically, in the type of stimuli, including the 
amount of variability in the stimuli, and structure of the categorization task, differ-
ences which can shape whether infants form the spatial category in the task. One 
notable difference across studies is in the representational depiction of the spatial 
relation. In studies with young infants, those in their first 6 months, the spatial rela-
tion is often depicted as a static image (e.g., Antell & Caron, 1985; Gava et  al., 
2009; Quinn et al., 2011). In studies with somewhat older infants (such as those of 
about 6  months and older), the spatial relation is instead usually depicted in a 
dynamic event in which a figure object, such as a cup, is seen being placed into the 
target relation to a second object (e.g., Casasola & Cohen, 2002; Hespos & Spelke, 
2004; McDonough et  al., 2003). Regardless of whether infants have viewed the 
static or dynamic versions of a spatial relation, if they look longer at the novel 
instance at test, they have provided evidence of forming a spatial category, suggest-
ing that perhaps the level of representation of the spatial relation may not signifi-
cantly impact their performance on the categorization task. However, to date, very 
young infants have not been tested with the dynamic versions of spatial relations, 
nor have any studies directly compared infants on their spatial categorization across 
static versus dynamic instances of a spatial relation. Similarly, most studies present 
spatial relations as two-dimensional representations of the images or event, but in a 
few cases, infants have been tested with live presentations of a dynamic spatial 
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events (Hespos & Piccin, 2009; Hespos & Spelke, 2004). It is not clear if one type 
of event may be easier for infants to encode and to categorize or if instead infants 
are attuned to the spatial relations in their environment whether they are in motion 
or static and whether they are viewed on a screen or in person.

One distinct advantage of the studies that present static images of the spatial rela-
tion is that these studies depict the familiarized and novel spatial relations side by 
side at test, possibly facilitating infants’ ability to compare the two images and 
attend to the novel relation. In studies that use dynamic events of spatial relations, 
the test events are instead presented sequentially (but see Choi, 2006, and 
McDonough et al., 2003, for exceptions). This difference in the presentation of the 
test events has been shown to matter for infants’ categorization of objects. When 
given the opportunity to view exemplars side by side during familiarization, even if 
the overlap in items is brief, infants are more likely to form the objects’ category 
than when familiarized to objects sequentially (Kovack-Lesh & Oakes, 2007). This 
difference in results has been attributed to the greater memory demands created 
when test items are presented sequentially. It is not surprising then that infants can 
provide evidence of category formation with paired presentations than sequential 
ones. Of course, this direct comparison has not been conducted with infants’ catego-
rization of spatial relations, but it stands to reason that the same pattern of results 
may emerge with infant spatial categorization, with the inclusion of paired test 
events possibly facilitating young infants’ spatial categorization.

Studies of infant spatial categorization have also differed in the type of objects 
used to depict the spatial relation of interest. There seems to be a divide in the per-
ceptual complexity and amount of variability in the stimuli presented to younger 
versus older infants. Studies with the youngest infants have used monochromatic 
symbols or geometric forms, in relation to a fixed referent object, such as a bar, to 
depict the spatial relation, such as those depicted in the first row of Fig. 3.1 (e.g., 
Gava et al., 2009; Quinn, 1994; Quinn et al., 1996). For example, Quinn (1994) 
selected a dot and line to test infants on their categorization of above versus below, 
Gava et al. (2009) used a flashing gray square against a dark background in relation 
to a vertical bar, and Antell and Caron (1985) depicted a plus sign above a square 
when testing infants in one of the first studies to explore infants’ ability to encode 
the spatial arrangement between two objects. In contrast, in studies with older 
infants, the spatial relations have been depicted with realistic objects in dynamic 
events, such as tubes, cups, and toys, such as those depicted in the second and third 
rows of Fig. 3.1 (e.g., Casasola & Cohen, 2002; Hespos & Spelke, 2004; McDonough 
et al., 2003). There has not been much discussion about the choice of objects used 
to depict the spatial relation in studies of infant spatial categorization. Presumably, 
the stimuli are created or chosen because they are considered most appropriate for 
the goals of a study and for the age of infant tested. For young infants, particularly 
those with limited visual acuity, perceptually simple, monochromatic stimuli with 
high contrast seem ideal for ensuring that infants can parse the objects from their 
background. Nonetheless, it is not clear whether very young infants would demon-
strate the same ability to form a spatial category if provided with more perceptually 
rich objects.
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The stimuli in spatial categorization task can differ in the amount of variability 
they introduce throughout the experiment, with implications for the scope of the 
spatial category that infants form. In some cases, there is minimal variability across 
the exemplars with infants viewing familiarization and test objects that are identical 
to each other. For example, Gava et al. (2009) presented neonates with a square that 
flashed in one of three locations on one side of a vertical bar. During the test phase, 
infants viewed pairs of stimuli in which the blinking square appeared in a novel 
location, not seen during the familiarization phase. In one test stimulus, infants 
viewed the square on the same side of the vertical line as during familiarization, 
whereas in the other test stimulus, it appeared on the alternate side of the bar. Infants 
demonstrated a significant preference for the test stimulus that depicted a change in 
the left-right placement of the square relative to the vertical line. That is, very young 
infants demonstrate the ability to generalize across changes in absolute location 
between a single, simple shape (e.g., a square) and a single referent (e.g., a bar). 
However, because the only variation between the familiarized and test events was in 
the specific location of the object in relation to the referent line, this type of spatial 
category has been described as a perceptual one because the scope of generalization 
is a narrow one.

The spatial categorization tasks with older infants have presented greater amount 
of variability across the exemplars than the tasks presented to younger infants. For 
example, in the study by Rigney and Wang (2015), infants viewed three distinct 
pairs of objects in a containment relation and, during the test phase, viewed novel 
objects in the familiarized relation as well as novel objects in an unfamiliar relation. 
McDonough et al. (2003) presented infants of 9, 11, and 14 months with three pairs 
of dynamic events to depict a spatial relation. Each pair depicted distinct objects 
such that infants were given exposure to six exemplars of a spatial relation and each 
exemplar depicted very different objects. A similar design has been used to explore 
when infants can form a more abstract representation of above versus below (Quinn 
et  al., 1996), between (Quinn et  al., 2003), support (Park et  al., 2012; Park & 
Casasola, 2015), and tight-fit (Casasola & Ahn, 2017). Because infants must gener-
alize the spatial relation from one set of objects seen during familiarization to new 
objects seen during the test phase, they are argued to have formed an abstract cate-
gorical representation of a spatial relation (Casasola, 2008; Quinn et al., 1996) and 
to have formed a spatial category that is broader in the scope of categorization rela-
tive to the task with neonates that present the same objects throughout the task.

Finally, studies also have differed in the number of distinct exemplars presented 
during the familiarization or habituation phase. Many studies familiarize infants 
with four exemplars of a spatial relation (e.g., Casasola & Cohen, 2002; Park et al., 
2012; Park & Casasola, 2013; Quinn, 1994; Quinn et al., 1996, 2003), but several 
use just two or three exemplars (e.g., Casasola, 2005; Park & Casasola, 2015; 
Rigney & Wang, 2015), and a few use as many as six exemplars (Casasola, 2005; 
Park & Casasola, 2015; Choi, 2006; McDonough et al., 2003). Presenting infants 
with multiple exemplars of a spatial relation in the spatial categorization task is a 
useful tool for probing the nature of infants’ spatial categories and, in particular, 
their ability to generalize a spatial relation from the array of distinct, familiarized 
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examples of the relation to novel ones. In particular, manipulating the similarity 
among the exemplars makes it possible to test the breadth of events that infants can 
organize into a spatial category.

Interestingly, not all studies of infant spatial categorization have relied on pre-
senting infants with a set of distinct exemplars during the familiarization phase to 
examine their ability to generalize a spatial relation. In some studies, infants are 
familiarized to a single event. For example, in their first study by Gava et al. (2009), 
neonates viewed a single exemplar of the spatial relation, a flashing square in a 
single location on one side of the bar. Even after viewing just this single exemplar, 
neonates generalized the left-right arrangement to a novel location on the same side 
of the vertical bar as presented during familiarization, looking longer at the display 
with the square in the new location on the alternate side of the vertical bar. Thus, 
even within days after birth, infants demonstrate the ability to generalize across 
changes in absolute locations that maintain the left-right spatial arrangement 
between two objects.

In another study, Hespos and Spelke (2004) presented infants with a single event 
and then tested infants with changes in the type of spatial relation. The goal of this 
study was to document infants’ ability to discriminate changes in the degree of fit 
between two objects, testing infants’ categorical perception of tight-fit, a relation 
that is the basis of a semantic category in Korean. Given this goal, the inclusion of 
a single familiarization event was well suited to exploring young infants’ sensitivity 
to when there is an exact, interlocking fit between two objects. Similarly, Hespos 
and Piccin (2009) demonstrated that infants of 5 months could generalize the type 
of fit from one type of event to a distinct type of spatial event, even when familiar-
ized to a single event. In this study, infants were familiarized to a single exemplar of 
an event, a covering event for some infants and an occlusion event for other infants. 
Infants then viewed test events that depicted a containment relation. Critically, the 
containers were much wider than the object, depicting a loose-fit, or were only 
slightly wider than the lowered object, depicting a tight-fit once inserted. Even with 
habituation to a single event, infants of 5 months generalized the type of fit when 
habituated to the covering events. They looked significantly longer at the test events 
that depicted the change in fit. Thus, although presenting multiple exemplars is a 
common practice when testing infant spatial categorization, infants can sometimes 
generalize their spatial knowledge without it. More specifically, infants can still 
generalize a spatial relation following experience with just a single exemplar, point-
ing to the robustness of this skill across variation in the structure of the spatial cat-
egorization task.

In sum, the procedures for studying infant spatial categorization all share the 
same dependent variable, infant looking to a familiarized versus novel spatial rela-
tion. Yet these paradigms also can differ in how they represent the spatial relation 
(e.g., static vs. dynamic, two-dimensional vs. three-dimensional), the type of 
objects presented (symbols, simple tubes or container, or more perceptually 
detailed household items or toys), the variability in the objects across the phases of 
the categorization task (no variability to low variability to relatively high variability), 
and the number of exemplars (from a single exemplar to as many as six exemplars), 
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variations which can shape infants’ ability to form the spatial category. Impressively, 
infants often have provided converging evidence of forming a spatial category 
across versions of the task which can be quite distinct from each other, including 
in the number and similarity of the exemplars. In cases where results have not con-
verged, the discrepancy in results offers valuable insights into the processes that 
contribute to the development of this spatial skill. Indeed, one can consider each 
study of infant spatial categorization as its own exemplar of this ability, and by 
comparing across exemplars, it becomes possible to identify which aspects of 
infant spatial categorization are robust and which aspects may be emerging and, 
thus, sensitive to variation in how this skill is tested. In addition, discrepancies 
across results can signal which aspects of infant spatial categorization are currently 
emerging as well as point to the underlying processes guiding the development of 
this skill.

�Does Infant Spatial Categorization Benefit from Multiple 
Examples?

Thus far in our discussion, the impact of exemplars on infant spatial categorization 
task has been inferred by comparing differences in the learning phase that impact 
results across individual studies. In these studies, infants form the spatial category 
regardless of whether they view a single versus multiple exemplars of the relation 
during familiarization, suggesting that the number of exemplars may not have a 
significant impact on infants’ ability to form a spatial category. However, there is a 
sizable literature reporting a significant effect of varying the number of exemplars 
during the learning phase, suggesting that, although exemplar number may not 
seem to have a strong effect across individual studies of infant spatial categoriza-
tion, it may nonetheless promote infants’ generalization when manipulated within 
a study.

To explore this possibility, we conducted several studies to test how manipulat-
ing the exemplars provided to infants during habituation shapes their categorization 
of spatial relations. In one set of studies, we manipulated the number of exemplars 
provided during habituation and tested infants on their categorization of contain-
ment and support relations (Casasola, 2005; Park & Casasola, 2015). In previous 
studies, we had found that infants of 10 and 18 months demonstrated greater ease in 
forming a spatial category of containment than support (Casasola & Cohen, 2002). 
We reasoned that if manipulating the number of exemplars has a significant effect 
on how infants form spatial categories, then infants might benefit from this manipu-
lation and form a spatial category of support. However, if manipulating the number 
of exemplars creates a more difficult spatial categorization task, then we might 
instead see infants struggle to form a spatial category that they have formed in previ-
ous studies, that is, containment. Thus, the inclusion of two spatial categories made 
it possible to explore the directionality of the effect of manipulating exemplar num-
ber during the habituation phase. We also included two age groups of infants, those 
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of 10 and 14 months, to document whether the effect of this manipulation might 
vary with infants’ cognitive abilities.

Infants of each age were randomly assigned to one of two exemplar conditions, 
viewing either two or six exemplars of a specific spatial relation, and to one of the 
two spatial relations, either containment or support. During habituation, infants in the 
two-exemplar condition viewed two pairs of objects in a spatial relation (contain-
ment for one group of infants, support for another group of infants). In comparison, 
infants in the six-exemplar condition viewed six pairs of objects in the spatial rela-
tion. Each pair of objects depicted a unique figure, a clay figurine generally resem-
bling an animal or person, placed in a containment or support relation to a referent 
object, such as a box, bowl, or cup, also unique within each pair. Although the pairs 
were distinct from each other, the figures did share a similar shape, vaguely resem-
bling the overall structure of a snowman. If greater familiarity with a limited number 
of exemplars facilitates infants’ spatial categorization, then infants provided with 
only two exemplars of the relation should be at an advantage to those provided with 
six exemplars; these infants would have more opportunities to view the two object 
pairs in their spatial relation throughout habituation. In contrast, if infants benefit 
from experience with more examples of a spatial relation, even though they would 
have less exposure to a specific exemplar, then infants in the six-exemplar condition 
should demonstrate more robust generalization of the spatial relation. Of particular 
interest was how infants in each condition would generalize their habituation of the 
spatial relation to a novel pair of objects in that relation (Fig. 3.2).

Habituation Events: Two-Exemplar Condition

Habituation Events: Six-Exemplar Condition

Fig. 3.2  Examples of the habituation support events used across the exemplar conditions of Park 
& Casasola (2015)
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Following familiarization to either two or six exemplars of a containment or sup-
port relation, infants viewed four test trials, in a randomized order. One test event 
was an event seen during habituation. This familiarized event served as a baseline to 
infant looking during the test phase because both the objects and the spatial relation 
had been presented during habituation and were expected to be familiar to infants 
by the test phase. The remaining three test events presented a change in either the 
objects, the spatial relation, or both the objects and spatial relation. More specifi-
cally, across the four test events, two of the test events depicted objects seen during 
habituation, with one pair depicting the familiarized relation and another pair 
depicted in a novel relation. For these test events with familiarized objects, longer 
looking to the novel than familiarized relation is taken as evidence that infants dis-
criminate the spatial relation. Two other test events presented novel objects, seen for 
the first time during the test phase. One of these novel object pairs depicted the 
familiarized spatial relation and the other a novel spatial relation. For these two test 
events with novel objects, a significant increase in looking time to the novel than 
familiarized spatial relation is taken as evidence that infants have generalized their 
learning of the familiarized spatial relation to a novel exemplar. That is, infants 
would provide evidence of having formed an abstract representation of the spatial 
relation (Fig. 3.3).

For infants of 10 months, there was a significant effect of exemplar number on 
their spatial categorization. Whether infants were habituated to a containment or 
support relation, they formed the spatial category when habituated to six exemplars 
of the relation. Specifically, these infants demonstrated significantly longer looking 
times to spatial events with an unfamiliar than familiarized spatial relation and 
did so whether the objects in the test events were familiar or novel. In contrast, 

Test Events

Fam Objects-Fam Relation Fam Objects-Nov Relation

Nov Objects-Fam Relation Nov Objects-Nov Relation

Fig. 3.3  Sample test events used in Casasola and Park (2013)
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when familiarized with only two exemplars of the spatial relation, infants of 
10 months failed to provide any evidence that they had formed either spatial cat-
egory. They did not show a significant increase in looking time to the novel rela-
tive to the familiarized spatial relation, whether the objects were familiar or novel. 
That is, limiting infants’ experience to two examples made it difficult for them to 
form a spatial category.

The findings with infants of 10 months are consistent with results across many 
other domains. For example, Needham, Dueker, and Lockhead (2005) found that 
if provided with only a single exemplar of a cylinder next to a box, infants did not 
segregate the display into two objects. However, if given three distinct exemplars 
of a cylinder and box, infants were able to parse the display into two objects. 
Quinn and Bhatt (2005) noted that 3- and 4-month-old infants organized elements 
when provided with three exemplars but failed to do so when given only a single 
example of the elements. Similarly, Bomba and Siqueland (1983) noted that 
infants required experience with 12 exemplars of irregular geometric forms to 
form the prototype of the form, and Gómez (2002) also found that significantly 
increasing the number of exemplars made it possible for both adults and infants to 
attend to nonadjacent dependencies in an artificial language. Infants could learn to 
attend to a previously ignored object feature if given experience with multiple 
exemplars in a study of infant physical reasoning (Wang & Baillargeon, 2008). In 
the domain of verb learning, Childers (2011) found that toddlers of 2.5 years were 
more effective in generalizing a novel verb if viewing multiple unique exemplars 
than when given multiple exposure to a single event. Finally, Vukatana, Graham, 
Curtin, and Zepeda (2015) noted that infants of 11  months could generalize a 
sound pairing if familiarized to three exemplars, but not when familiarized with a 
single exemplar. As these examples illustrate, increasing variability by providing 
a greater number of unique exemplars can aid learning, facilitating generalization. 
As the number of unique exemplars increase, infants may be better able to attend 
to the relational commonality of the spatial relation and form the spatial category. 
That is, increasing the number of exemplars may guide infants’ attention to what 
is relevant for the category (the spatial relation) and to disregard what is not (the 
objects in the spatial relation).

Despite the many findings outlining the benefits of multiple exemplars on learn-
ing, there are instances in which providing additional exemplars has not promoted 
infant spatial categorization. In contrast to the infants of 10 months, the 14-month-
old infants tested by Casasola and Park (2013) formed the spatial categories of 
containment and support regardless of whether they viewed two or six exemplars of 
the relation. That is, the number of exemplars did not have a significant effect on 
their spatial categorization. One interpretation of this result is that by 14 months, 
infants have developed the skills to form a spatial category under more diverse 
conditions than infants of 10 months. However, in a previous study with infants of 
14 months, infants best formed a spatial category of support when habituated to two 
exemplars and failed to do so when habituated to six exemplars of the relation 
(Casasola, 2005). This pattern of results not only contrasts with what was found for 
infants of 10 months but also is inconsistent with Casasola and Park (2013), who 
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found no effect of the number of habituation exemplars on 14-month-old infants’ 
spatial categorization.

A closer inspection of the results for infants of 14 months in each study does 
show some degree of consistency in how infants of this age form spatial categories 
when provided with two versus six exemplars of a spatial relation. In the Casasola 
(2005) study, infants of 14 months only formed the spatial category of support when 
provided with two exemplars (and failed to do so when provided with six exemplars 
of support). This pattern of results suggested a benefit of few exemplars of a support 
relation for infants of 14 months. Similarly, Casasola and Park (2013) found that 
more infants of 14 months formed the spatial category of containment or support 
when habituated to two exemplars than when habituated to six exemplars. That is, 
there was some indication in each study that fewer exemplars may be more benefi-
cial in forming a spatial category than more exemplars for infants of 14 months.

Why does the effect of exemplar number differ across the two age groups? One 
possibility may have to do with the degree to which infants encode the objects in the 
spatial events, which in turn shapes their ability to look beyond the objects to form 
the spatial category. Infants may benefit from additional exemplars of a spatial rela-
tion when the increased variability in the irrelevant features can easily shift attention 
to the relevant feature, in this case from the objects to the spatial relation. For exam-
ple, Casasola and Park (2013) reported a significant effect of age on infants’ dis-
crimination of the objects in the spatial events. Although infants at each age 
discriminated changes in the objects during the test phase, infants of 14 months 
demonstrated a significantly greater increase in looking to the novel than familiar-
ized objects than did infants of 10 months. Perhaps because infants of 10 months 
were less attentive to the change in objects than the infants of 14 months, viewing 
more exemplars of the spatial relation facilitated their spatial categorization. In con-
trast, because infants of 14 months were more attentive to objects, increasing the 
number of objects (as in the six exemplars) may have created a more challenging 
categorization task for them. Maguire, Hirsh-Pasek, Golinkoff, and Brandone 
(2008) outlined a similar point when examining young children’s ability to gener-
alize a novel label for an action. The children of 2.5 and 3 years in their study 
demonstrated more robust generalization of the novel verb when familiarized to a 
single actor depicting the target action than when four actors depicted the action. 
These authors suggest that the actors were more salient than the action, and for this 
reason, fewer exemplars provided the conceptual scaffolding to focus on the action 
rather than on the agent. When additional exemplars were included during the learn-
ing phase, the increase in the number of actors may have overwhelmed the young 
children with the irrelevant information. Childers, Paik, Flores, Lai, and Dolan 
(2016) outlined a similar pattern of results in which the young children from three 
distinct language groups displayed greater difficulty learning a verb when the com-
plex actions were depicted by multiple agents.

The results from our studies of exemplar number document a clear benefit of 
increasing the number of exemplars for infants of 10  months. For infants of 
14 months, however, infants either did not show any effect of exemplar number 
(Casasola & Park, 2013) or, instead, demonstrated more robust generalization when 

M. Casasola and Y. Park



schrist3@swarthmore.edu

47

habituated to two rather than six exemplars (Casasola, 2005). Additional research is 
needed to better understand when multiple exemplars can promote generalization 
and when, instead, it may create a more challenging spatial categorization task. 
As these results suggest, the effect of multiple exemplars varies with the cognitive 
skills of infants. Ironically, advances in one domain, such as greater attention to 
objects, may shift how they are forming categories of spatial relations and may com-
plicate whether infants do indeed benefit from an increase in the number of exem-
plars. We suspect that infants may most benefit from additional exemplars when they 
can easily attend to the relational commonality as the number of object pairs in the 
target relation increases, although this assertion remains to be tested. In the next 
section, we outline some of the mechanisms that guide infant spatial categorization 
and provide further discussion as to why variation in the features and number of 
exemplars has an impact on how infants form spatial categories.

�What Mechanisms Are Central to Infant Spatial 
Categorization?

How do infants generalize a spatial relation from one or multiple instances to 
another? How do infants form an abstract categorical representation of a spatial 
relation in which objects’ specific features are ignored? Like many other research-
ers, we postulate that forming an abstract categorical representation of a spatial 
relation involves abstraction, the process of extracting the essential commonalities 
among category members. We assume that it is the human mind’s ability to align 
two instances physically or mentally side by side (i.e., comparison) that highlights 
the essential commonalities. If comparison causes abstraction, exactly what is going 
on during comparison? In comparing spatial events, does the infant directly go to 
comparing the relational structures of the instances or shift from a component-level 
comparison to a structure-level comparison? We consider the process of structural 
alignment as a likely central mechanism underlying infants’ comparing, abstracting, 
and categorizing spatial relations.

Structural alignment has been originally proposed as the underlying mechanism of 
analogies (Gentner, 1983), which enables the learner to note the deeper relational 
structure shared between instances in different domains (Falkenhainer, Forbus, & 
Gentner, 1989; Gentner & Markman, 1997). Two critical pieces of structural align-
ment are to establish object correspondences between two instances and to compare 
the correspondences across common relational structure. Through this process, 
relations between objects are mapped from a base domain to a target domain. 
Furthermore, the structural alignment theory posits that the learner pursues the maxi-
mum number of commonalities. That is, the learner seeks for the largest and deepest 
commonalities between two instances; consequently, the particular relations mapped 
are determined by systematicity (i.e., the attention to higher-order relations).

Although the theory as initially proposed was more focused on analogies between 
two instances from different domains, it also presented the possibility that through 
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structural alignment a person can form a general rule when the learner goes beyond 
creating a temporary correspondence and creates a new relational structure whose 
objects are lacking in specific attributes so that it can be applied across widely 
different domains (Forbus & Gentner, 1983; Gentner, 1983; Gick & Holyoak, 
1980, 1983).

Structural alignment includes the process of progressive alignment (Kotovsky & 
Gentner, 1996). Progressive alignment refers to the idea that comparisons made 
between highly similar elements bolster learners to make subsequent alignments 
between instances having low surface-level similarity. That is, according to 
Kotovsky and Gentner (1996), progressive alignment acts as a mechanism of repre-
sentational change, by allowing children to make similarity comparisons over con-
crete, perceptual similarities (e.g., monotonic increase in size across differently 
shaped stimuli). Then, these similarity comparisons facilitate children’s ability to 
notice higher-order relational commonalities across stimuli possessing fewer 
surface-level features in common (e.g., increase in size as compared to saturation of 
color across differently shaped stimuli). Thus, alignment allows children to recog-
nize “richer and deeper” abstract relational similarities across mental representa-
tions that may not have been immediately apparent before similarity comparisons 
were made (Kotovsky & Gentner, 1996), and progressive alignment helps children 
learn how to make more difficult alignments (across more varied stimuli).

According to structural alignment theory, the characteristics of components in a 
relation (i.e., objects) influence how easily the alignment process occurs. That is, 
when the objects have a high degree of literal similarity across instances, that read-
ily invites the alignment process, a process that highlights the shared relational 
structure between two instances (Gentner, 1983; Gentner & Markman, 1997; 
Markman & Gentner, 1993). In particular, young children who have rich knowledge 
of objects and relatively sparse knowledge of relations (Gentner, 2005) may rely 
heavily on the presence of highly similar concrete object matches to carry out struc-
tural alignment and reason about relational structure. Further, the object correspon-
dences made by the learner generate a candidate set of inferences about the relational 
structure in the target domain that can be extended from the base domain 
(Gentner, 1983).

We suggest that infants undergo the process of structural alignment when they 
compare exemplars of a spatial relation during familiarization and, if able to 
encode the spatial relation, can then compare it from a familiar instance to a novel 
one. That is, infants presented with two or more exemplars of a spatial relation 
make correspondences between the objects and the relations across the examples. 
For example, in order to generalize a support relation from “a car on a truck” to “a 
pig on a stand” as shown in Fig. 3.1, infants should align (or match) the car to the 
pig and the truck to the stand. Moreover, the supporting role of the truck should be 
compared to the supporting role of the stand. Also, infants’ ability to notice the 
relation between the objects in one instance can affect whether they can generate 
inferences about the relation between the objects in the second instance. As shown 
by previous findings, infants can go beyond creating a temporary match between 
objects across two instances and create a common spatial relational structure 
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whose objects are lacking in specific attributes, which is an abstract categorical 
representation of a spatial relation.

However, infants do not always succeed in the categorization or generalization of 
spatial relations. The theory of structural alignment provides two possibilities about 
where difficulties may arise. Infants may have a difficulty in establishing the object 
correspondences across the two examples (possibly due to a lack of surface-level 
similarities), or infants may be misled by object matches across the two instances 
that are in different relational structures. Later in this section, we revisit these pos-
sibilities to explain infants’ success or failure in spatial categorization.

If the process of structural alignment underlies infants’ categorization of spatial 
relations, then the objects used to depict a spatial relational structure should play a 
central role in infants’ ability to align and compare scenes, a process that highlights 
the shared relational structure between two instances (Gentner, 1983; Gentner & 
Markman, 1997; Markman & Gentner, 1993). For instance, the more similar the 
corresponding objects are, the more likely one is to align the instances and note the 
common relational structure.

Many results from other labs support this view, and we have results from our lab 
from both infants and young children. From infants, we find that the objects do 
shape infant spatial categorization. First, comparison of studies that employed 
objects having different levels of similarity supports the view that similarity between 
elements influences infant spatial categorization. In some studies (e.g., Casasola & 
Cohen, 2002), infants were habituated to exemplars of support relations in which 
corresponding objects shared a low degree of similarity (e.g., car, cup, roundman, 
and turtle). Infants at 18 months failed to form the support category in this study. In 
other studies (e.g., Casasola, 2005; Casasola & Park, 2013), infants were habituated 
to exemplars where corresponding objects were snowman-shaped animals or human 
figures of similar size (see Fig. 3.2). In this case, infants of 14 months successfully 
formed the support category. In still other studies (e.g., Park et al., 2012; Park & 
Casasola, 2015), corresponding objects were highly similar in that the referent 
objects (the supportive objects) were larger tissue boxes and the figure objects (the 
supported objects) were smaller square blocks. In these studies, not only 14-month-
old but also 8-month-old infants successfully formed the support category. Together, 
the findings support the view that high similarity between elements results in high 
alignability (easier establishment of object correspondences) and that objects have 
an important role in recognizing a common relational structure.

Similar patterns of results have been found with preschool-aged children: Objects 
depicting a spatial relation impact preschoolers’ transfer of spatial relations. Park and 
Casasola (2017) examined 4- and 5-year-old children’s spatial reasoning in a match-
to-sample task, manipulating the objects in the task (abstract geometric shapes, line 
drawings of realistic objects, or both). Children generalized the target spatial con-
figuration (i.e., on, in, above) more easily when the sample used geometric shapes 
and the response options used realistic objects than the reverse (i.e., realistic-object 
sample to geometric-shape choices). With within-type stimuli (i.e., sample and 
choices were both geometric shapes or both realistic objects), 5-year-old, but not 
4-year-old, children generalized the spatial relations more easily with geometric 
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shapes than realistic objects. This advantage of perceptually sparse, abstract objects 
in relational transfer was consistent with findings from other relational transfer tasks 
(Kaminski & Sloutsky, 2010; Kaminski, Sloutsky, & Heckler, 2008; Uttal et  al., 
2013; Uttal, Scudder, & DeLoache, 1997). We posit that the symbolic simplicity of 
abstract objects allows these object to be flexibly represented and makes it easier for 
them to be easily conceived as referring to something else (e.g., a circle can refer to 
the sun, a clock, and so on). Consequently, when an abstract object is used as the 
sample in a task, object correspondences between the compared scenes may be more 
readily formed, enabling the transfer of the common relation. In contrast, realistic 
objects may be less flexible in their representations and, consequently, are less likely 
to be treated as referring to other objects and serving as a symbol (e.g., Uttal et al., 
1997), creating a more difficult task than the comparable task with abstract objects. 
Therefore, even if the learner has recognized the intended relation in a realistic 
instance, that relational knowledge may not translate as readily to another instance 
(Kaminski, Sloutsky, & Heckler, 2006).

In addition, Park and Casasola (unpublished dissertation) administered the same 
spatial analogy task to 3-year-old children. Interestingly, 3-year-old children did not 
show the advantage of abstract geometric shapes over realistic objects and in fact 
failed to transfer the spatial configurations, on and in, when they were depicted with 
abstract geometric shapes. They could transfer the relations of in, when they were 
depicted with realistic objects. Anecdotal records of children’s linguistic responses 
show that 3-year-old children may not have perceived the scene (e.g., a circle in a 
larger circle, a circle on a larger circle) as being composed of two objects (the figure 
and referent). Rather, they perceived them as one object such as a donut and a snow-
man. These findings suggest that younger preschool children’s failure in noticing 
the spatial relation between two objects may cause difficulties in forming corre-
spondences across examples, which in turn causes their failure to transfer spatial 
relations to new examples.

Similarity between the corresponding elements (i.e., objects) also strongly influ-
ences preschoolers’ appreciation of relational commonalities, including common-
alities in spatial relations. The more similar the corresponding objects are, the more 
likely young children are to note the common relational structure between the ele-
ments (e.g., DeLoache, Kolstad, & Anderson, 1991; Gentner & Toupin, 1986). 
When the object surface similarity conflicts with similarity of relational roles, pre-
school children are drawn to the object matches rather than relational matches, with 
mapping of relational roles hindered (Loewenstein & Gentner, 2005). Also, another 
example of object similarity facilitating mapping comes from DeLoache et  al. 
(1991), who showed that preschoolers performed better when the component objects 
in two spaces were similar to each other than when they were dissimilar. Thus, the 
appearance, features, and similarity of objects can either support or hinder young 
children’s recognition of spatial relational commonalities.

Furthermore, preschool children’s far mapping of spatial relations is facilitated 
by their close mapping, a finding that supports progressive alignment in the domain 
of spatial relations (Loewenstein & Gentner, 2001). To our knowledge, a direct test 
of progressive alignment in infants’ spatial categorization has not been conducted 
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yet, outlining a task for future research. For example, a study can be designed to 
test whether infants of 18 months can generalize the support relations to the widely 
different objects and to the various subtypes of support relations if the stimuli pres-
ent the support relations from the highly similar ones (in terms of both object simi-
larity and relational similarity) gradually to the highly dissimilar ones.

Thus far, we have reviewed the structural alignment theory and emphasized the 
importance of objects in noticing relational structures of instances. However, does 
the theory mean that learners always move from a component-level comparison to 
a structure-level comparison when seeing two instances? Or can the learner start by 
comparing the structures of the instances? Perhaps both are possible: In some cases, 
the comparison may occur in a top-down manner, from a higher-order commonality 
to lower-level commonalities; in other cases, comparison may occur in a bottom-up 
manner. It might depend on the relative salience of the common structure and the 
learner’s prior relational knowledge (allowing easy access to the relational structure 
information from a single exemplar). Thus, one possibility is that the younger or 
more inexperienced we are (novice cognizer), the more surface-level commonalities 
(objects’ perceptual commonalities such as shape and color) we attend to, rather 
than larger structural commonalities. Therefore, when comparing two instances, 
younger minds rely more on starting with building correspondences between the 
elements of the relational structure.

�How Could the Other Theories in This Area Impact or 
Contribute to Your Findings?

Although we posited structural alignment as the central mechanism underlying 
infants’ spatial categorization and young children’s transfer of spatial relations, sev-
eral other mechanisms might have worked together to explain some of these find-
ings of infant spatial categorization. First, it is possible that infants’ formation of an 
abstract categorical representation of a spatial relation benefits from their statistical 
learning (Marcus, Vijayan, Bandi Rao, & Vishton, 1999; Saffran, Aslin, & Newport, 
1996), the ability to extract a rule or a set of regularities from input, using statistical 
properties of input. Research has shown infants’ ability to track sequential statistical 
information with visual shapes (Fiser & Aslin, 2002; Kirkham, Slemmer, & Johnson, 
2002). Thus, our infant participants might have similarly learned a set of sequential 
rules during the habituation phase, the rules such as the presence of two objects 
(a smaller one and a larger one, placed side by side), a hand coming in, and then the 
smaller object being picked up and placed on top of the larger object. Following the 
habituation phase, when the infant witnessed the rule violated, they responded to it 
with increased looking time. Studies to date have not tested between these two pos-
sibilities, and it remains to be seen if structural alignment or statistical learning best 
captures the pattern of results reported in infants’ spatial categorization.

Another possible contributing factor to our findings is infants’ forgetting. 
The spacing effect refers to findings showing that abstraction and generalization can 
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be facilitated by interleaving the exemplar learnings and allowing learners time for 
forgetting (Vlach, 2014). To our knowledge, this effect has not been tested yet in the 
studies of infant spatial categorization. However, the theory raises an interesting 
possibility that forgetting (due to the wide variety of factors rather than a temporal 
gap between learning sessions) also contributes to our finding. More specifically, 
note that increasing the number of exemplars promotes 10-month-old infants’ gener-
alization of spatial relations to a novel instance. Possibly, with two exemplars repeat-
edly shown during the habituation phase, 10-month-old infants may be able to 
remember all the details of the objects and store object-specific representations in 
their memory. In contrast, with six exemplars, although they too are repeatedly 
shown, it may be hard for them to retain all the object details, namely, forgetting the 
continuously variant (or less frequently appearing) elements of the scenes. This 
forgetting may have led the infants to consider the test stimulus presenting a novel 
(but somewhat similar) pair of objects in a familiar spatial relation as familiar. The 
same explanation can also be applied to the finding about the impact of object per-
ceptual features on infants’ spatial categorization of support relations (Park & 
Casasola, 2015). Namely, infants formed the abstract categorical representation of 
support relations with perceptually complex objects, but not with simple objects.

Some of our findings regarding infant spatial categorization may be better explained 
by considering not only structural alignment theory but also other theories alongside. 
For example, our finding that infants, particularly those of 8  months, formed an 
abstract categorical representation of support relations in the complex condition but 
not in the simple condition may be explained by the goldilocks effect (Kidd, Piantadosi, 
& Aslink, 2012). That is, a moderate level of visual complexity may be ideal for the 
abstraction of a spatial relation. Indeed, in a preliminary study where we added more 
perceptual features including googly eyes to the complex objects, infants of 10 months 
failed to generalize a support relation to a novel pair of objects. Moreover, the object 
categorization literature suggests that nearly identical exemplars yield a highly inclu-
sive category and inhibit abstraction (Namy, Gentner, & Clepper, 2007), showing that 
too close exemplars do not promote abstraction and generalization. Given that the 
stimuli in the simple condition varied only in color, infants’ abstraction of the spatial 
relation in this condition may have been inhibited.

�Can Infant Spatial Categorization Inform Other Types 
of Spatial Learning?

In conclusion, we consider how the theories and findings with infant spatial categori-
zation may be extended to other skills. Although infants’ attention to and categoriza-
tion of spatial relations can be argued to be part of spatial cognition, the results from 
studies of infant spatial categorization are more often discussed with respect to non-
spatial than spatial skills. For example, studies examining infants’ and children’s ana-
logical reasoning have noted similarities in how generalization is shaped by the type 
of objects in the events (Ferry et al., 2015; Park & Casasola, 2017). Studies examining 
infant categorization of manner and path have noted similarities in the developmental 
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changes in this skill and infant spatial categorization, including noting infants’ greater 
ease in attending to some features of these motion events over others and in the facili-
tative effect of including labels during the familiarization phase (e.g., Pruden et al., 
2012, 2013; Pulverman et al., 2008). How infants encode and form concepts of spatial 
relations also has been discussed in relation to advances in young children’s skill in 
using spatial knowledge with real objects (e.g., accurately inserting shapes through 
openings) and discussed extensively with respect to the early acquisition of spatial 
language (e.g., Choi & Bowerman, 1991; Örnkloo & von Hofsten, 2007), extending 
infant spatial categorization to aspects of young children’s motor skills and manipula-
tion of objects and to their emerging language skills.

Interestingly, there has been less discussion of how infant spatial categorization 
relates to the development of other types of spatial skills. Can results from how infants 
form abstract representations of spatial relations be extended to consider developmen-
tal changes in the spatial domain more broadly? We argue that it can. Infant spatial 
categorization and, in particular, how multiple exemplars can shape infant spatial cat-
egorization can lend insight into children’s performance on other types of spatial 
skills. One example, mentioned previously, is young children’s spatial reasoning. Park 
and Casasola (2017) documented an effect of the objects in young children’s ability to 
generalize a target image with a particular spatial relation to a novel instance, similar 
to way that specific object characteristics can shape infant spatial categorization. As 
another example, consider mental rotation, the ability to imagine the appearance of an 
object when in a different orientation. An interesting question is whether there may be 
some degree of overlap between infant spatial categorization and their later mental 
rotation. For both skills, the objects that depict a spatial relation and those to be men-
tally rotated can shape performance on each task (e.g., Dalecki, Hoffmann, & Bock, 
2012; Thomas, Dalecki, & Abeln, 2013; Park & Casasola, 2015), pointing to a degree 
of intersection between the two skills.

Extrapolating from studies of infant spatial categorization to the study of other 
spatial skills allows us to outline possibilities for how to promote these other types 
of spatial skills, creating a road map of how we might manipulate experience with 
particular exemplars to promote spatial reasoning and mental rotation. Although 
manipulating these exemplars may not ultimately promote other types of spatial 
skills to the same degree as infant spatial categorization, they do offer an exciting 
approach to begin to bridge work in different areas of spatial cognition.
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Chapter 4
How the Demands of a Variable 
Environment Give Rise to Statistical 
Learning

Erik D. Thiessen

Abstract  Language inherently requires learners to process variability in the input, as 
no two utterances, sentences, or speakers sound identical. Statistical learning, the abil-
ity to identify structure in the input by detecting regular patterns, is a potential mecha-
nism that may help infants and adults cope with, and benefit from, the variability in 
linguistic input. In this chapter, I provide an overview of statistical learning phenom-
ena, including identifying units (such as words) from the co-occurrence of sounds and 
discovering category membership from the frequency and variability of exemplars in 
the input. While there are many different statistical learning tasks, I propose that they 
share many commonalities that can be explained by viewing statistical learning as 
an emergent property of the way that information is stored, accessed, and integrated 
in memory. This perspective makes novel predictions about the process of language 
development and how it is related to more domain-general cognitive processes.

Language acquisition is a domain in which learning necessarily depends on multi-
ple exemplars. In part, this is due to pragmatic constraints. Children are typically 
exposed to – and learning from – multiple caregivers and even from multiple lan-
guages. Moreover, even a single source of linguistic input (e.g., a single parent) will 
produce a significant amount of variability, due to factors like speech register (e.g., 
Biber, 1999), coarticulatory environment (Iskarous & Kavitskaya, 2010; Perkell & 
Matthies, 1992), and changes in the child’s own maturational and linguistic devel-
opment resulting in different language use contexts (e.g., Englund & Behne, 2006; 
Stern, Spieker, Barnett, & MacKain, 1983). Perhaps even more importantly, the 
nature of language itself requires multiple exemplars to learn. This is due to the fact 
that linguistic knowledge is generative (Chomsky, 1956). That is, a fluent language 
speaker uses their knowledge of language to produce novel, grammatically 
acceptable utterances. As such, language consists of a potentially infinite set of 
utterances and cannot be learned by rote rehearsal of a fixed set of exemplars.
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Learning from multiple exemplars requires learners to deal with variability. The 
same underlying construct (e.g., a word) will rarely be expressed in an identical man-
ner across different exemplars of that construct. The variability in language has been 
conceptualized as both an obstacle and a benefit to learning. Consider, as an example, 
the influence of coarticulation on phoneme production and perception. Coarticulation 
refers to the fact that production of a speech sound, in fluent speech, is influenced by 
the identity of preceding and following sounds (Hardcastle & Hewlett, 2006). This 
means that there is no single invariant form of a phoneme. Instead, every time a pho-
neme is produced, it will differ as a function of the sounds surrounding it (e.g., the 
phoneme /t/ is produced with more pronounced aspiration in syllable initial position, 
as in “top,” than inside a consonant cluster, as in “stop”). This variability in the way 
a phoneme is articulated leads to a complex relationship between acoustic cues and 
phonemic identity. Cues vary greatly as a function of context, and there is often no 
single invariant cue that can serve to infallibly identify a phoneme. Indeed, the vari-
ability in acoustic realization of a phoneme is so great that some theories hold it to be 
intractable, arguing that identification of phonemes is instead done by reference to 
the (relatively less variable) neuromotor commands that give rise to articulation 
(Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967). While a comprehen-
sive exploration of the motor theory of speech perception is beyond the scope of the 
current discussion (for a review, see Galantucci, Fowler, & Turvey, 2006), it serves to 
illustrate the challenges that variability poses to speech perception.

Despite the difficulty posed by coarticulation-induced variability in the produc-
tion of phonemes, coarticulation also plays an important facilitative role in speech 
perception. The effects of coarticulation provide listeners with cues about the iden-
tity of the preceding and following speech segments (for review, see Diehl, Lotto, & 
Holt, 2004). For example, when presented with a sound ambiguous between a/d/ 
and a/g/, listeners are able to use the characteristics of the preceding sound to help 
them identify the identity of the ambiguous phoneme (Lotto & Kluender, 1998). 
Similarly, coarticulation plays a role in word segmentation, as sounds within a word 
show more profound coarticulatory effects than sounds across word or (especially) 
phrase boundaries (e.g., Johnson & Jusczyk, 2001). Indeed, the effects of coarticu-
lation are so informative that when listeners are presented with words removed from 
their coarticulatory context, word recognition rates drop by approximately half, 
even for familiar high-frequency words (Pollack & Pickett, 1964).

As the example of coarticulation indicates, the effect of variability across exem-
plars has a double-edged impact on learning. On one hand, variability presents a 
challenge to learners. It increases the complexity of the input and requires learners 
to identify those aspects of variation that are informative and those that are irrele-
vant (note that there is not a “one size fits all” solution to this problem, as in many 
cases variability that is irrelevant to one task is critical to another). On the other 
hand, variability facilitates some aspects of learning, such as generalization to novel 
exemplars (e.g., Lively, Logan, & Pisoni, 1993; Perry, Samuelson, Malloy, & 
Schiffer, 2010). Nor are the effects of variability across exemplars limited to speech 
perception. Indeed, it appears to be the case that this characterization of the role of 
variability – as both a boon to learning and an obstacle to be overcome – applies to 
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many levels of linguistic organization. Consider, for example, the variability in the 
surface realizations of a unit such as “noun phrase.” Just as in speech perception, 
learning of phrase structure appears to be affected by the variability of the input 
(e.g., Gómez & Gerken, 2000; Mintz, 2003).

A further challenge presented by variability in linguistic input is that variability 
has different implications as a function of context. This is clearly the case across 
different languages (and thus for bilingual learners); for example, the same variance 
in frequency that is informative about the difference between/r/ and /l/ in English is 
uninformative in Japanese (e.g., Best & Strange, 1992). But it is also the case within 
even a single language. Consider variation in voice onset time. In English (as in 
many other languages), the difference between voiced and voiceless consonants is 
primarily signaled by differences in voice onset time. Voiced consonants typically 
have a voice onset time around 0 msec; voiceless consonants typically have a voice 
onset time around 40 msec (e.g., Allen & Miller, 1999). When making categorical 
distinctions between phoneme identity, differences “within” a category (such as the 
difference between 5 and 10 msec) are typically ignored (e.g., Gerrits & Schouten, 
2004). However, while variation within a category is uninformative for identifying 
phonemes, it is quite useful for identifying individual speakers, as different speakers 
have different idiosyncratic “preferred” or “modal” voice onset times (Allen, Miller, 
& DeSteno, 2003). That is, for some tasks, within-category differences in voice 
onset time are uninformative, while in other tasks (such as identifying a familiar 
speaker), within-category differences in voice onset time present useful informa-
tion. This means that language users must learn when to rely on, and when to ignore, 
variation in the input.

In our work, we have proposed that language learners – especially, but not only, 
infant language learners – benefit from the distribution of information across mul-
tiple exemplars to discover which aspects of variation in the input are informative 
(Thiessen, Kronstein, & Hufnagle, 2013). The ability to identify informative struc-
ture across surface variability arises in part due to an ability often referred to as 
“statistical learning” (Saffran, Aslin, & Newport, 1996). In the remainder of this 
chapter, we will explore how statistical learning helps infants to discover regulari-
ties presented across multiple exemplars and the possibility that statistical learning 
results from general principles organizing human memory. We will begin with an 
overview of conditional statistical learning (e.g., discovering co-occurrence rela-
tions) and turn to an overview of distributional statistical learning (e.g., discovering 
category boundaries), before discussing how these different forms of statistical 
learning can be unified in a memory-based framework.

�Conditional Statistical Learning and Language Acquisition

The term “statistical learning” is often taken to mean sensitivity to probabilistic 
relations among sequential elements in a continuous stream of input (e.g., Johnson 
& Seidl, 2008; Saffran et al., 1996). Indeed, there is now a great deal of evidence to 
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suggest that infants and adults are sensitive to sequential co-occurrence probability 
in linguistic (and nonlinguistic) stimuli. This sensitivity can be used to identify 
words in a stream of fluent speech, insofar as sounds within a word are more likely 
to co-occur than sounds across word boundaries (e.g., Aslin, Saffran, & Newport, 
1998; Hayes & Clark, 1970). Similarly, the co-occurrence of words can be a useful 
cue to phrase boundaries, to the extent that words within a phrase are more likely to 
co-occur than words across phrase boundaries (e.g., Thompson & Newport, 2007). 
Linguistic structure is characterized by a variety of sequential regularities at differ-
ent levels of analysis, including phonemic, syllabic, and lexical (e.g., Swingley, 
1999; Taylor & Black, 1998; Vitevitch & Luce, 2004).

As this discussion indicates, sensitivity to sequential probabilities can be useful 
for acquiring a variety of linguistic regularities. Even so, the role of sensitivity to 
conditional relations in language acquisition has been most thoroughly explored 
with respect to word segmentation, and a discussion of this role can help to illumi-
nate the process of learning from probabilistic input. In a typical word segmentation 
study, participants are presented with a stream of syllables. These syllables are often 
computer synthesized, to ensure that there are no acoustic cues to the structure of 
the input. Unbeknownst to the participants, these syllables are organized into a set 
of words, such that when the first syllable of a word is heard, the other syllables 
invariably follow; at the end of a word, any of the other words in the language may 
follow. This means that syllables within a word are very likely to co-occur, while 
syllables across word boundaries are less likely to co-occur.

This likelihood of co-occurrence is often described in terms of transitional prob-
ability. Transitional probability is calculated as the frequency with which a pair 
(XY) occurs, in comparison with the rate at which an element within that pair (e.g., 
X) occurs; as such, transitional probabilities can range between 0 (XY never occurs) 
and 100% (XY occurs every time X occurs). Consider, for example, an artificial 
language made up of four words: golabu, padoti, daropi, and bidaku. Whenever the 
syllable “go” occurs, the syllables “la” and “bu” will always occur next. As such, the 
transitional probabilities within the word are 100%. By contrast, after the syllable 
“bu,” any of the other three words in the language (padoti, daropi, or bidaku) can 
occur next; as such, the transitional probability at word boundaries is 33%. When 
presented with an artificial language like this, infants and adults learn to differenti-
ate between sequences with high transitional probabilities (i.e., words) and items 
with lower transitional probabilities (e.g., a grouping of syllables that occurs across 
word boundaries, such as tidaro), even with relatively brief exposure times (e.g., 
Aslin et al., 1998; Saffran et al., 1996; Thiessen & Saffran, 2004). Notice that this 
type of statistical structure requires that learners have multiple exposures to the 
words in different contexts. If the words are only heard once (e.g., 
padotidaropibidakugolabu), transitional probabilities within words are identical 
(100%) to transitional probabilities across word boundaries. This suggests that hear-
ing multiple exemplars of words, in different contexts, can be facilitative for word 
learning (c.f. Rost & McMurray, 2009).

Of course, the results of these kinds of experiments are only informative about 
natural language learning to the extent that statistical learning is involved in the 

E. D. Thiessen



schrist3@swarthmore.edu

63

acquisition of natural language. There are now a variety of converging lines of evi-
dence to suggest that this is the case. One such line of evidence indicates that indi-
vidual differences in statistical learning ability are correlated with individual 
differences in language ability (Misyak & Christiansen, 2012; Misyak, Christiansen, 
& Tomblin, 2010). This correlation suggests that, at minimum, some of the factors 
that influence variance in statistical learning also influence variance in language 
ability, indicating some shared set of processes between statistical learning and lan-
guage. Alternatively, the correlation could indicate a relatively more direct link; if it 
is the case that statistical learning is a critical process in language acquisition (c.f. 
Romberg & Saffran, 2010), then individuals who are better at statistical learning 
may have an advantage in learning to use a language that persists into adulthood.

Another line of evidence that statistical learning is involved in the acquisition of 
natural language is that the representations that emerge from statistical segmenta-
tion tasks behave like lexical representations. That is, participants respond to the 
“words” that they have acquired from exposure to an artificial segmentation lan-
guage in a similar manner as they respond to words from their native language. For 
example, infants are unsurprised when words from an artificial grammar appear 
surrounded by familiar English words (Saffran, 2001). Similarly, infants and adults 
learn labels for novel objects more easily when they have segmented those labels 
from an artificial language (Estes, Evans, Alibali, & Saffran, 2007; Mirman, 
Magnuson, Estes, & Dixon, 2008). Finally, one of the key features of lexical repre-
sentations is that they are treated holistically (this is why, for example, participants 
can often identify a familiar word faster than the letters contained within the word; 
for discussion, see Paap, Newsome, McDonald, & Schvaneveldt, 1982). The 
“words” that participants learn from statistical segmentation experiments appear to 
be associated with representations of a similarly holistic nature. After learning a 
word like golabu from an artificial grammar, participants do not recognize compo-
nents contained within the word such as gola or labu (Giroux & Rey, 2009; Orbán, 
Fiser, Aslin, & Lengyel, 2008).

Taken together, these disparate lines of evidence suggest that learning from 
sequential probabilistic relations is not just something that participants can do in a 
laboratory task. Rather, these results indicate that statistical learning is involved in 
at least some aspects of language acquisition. At current, the evidence for this claim 
is stronger for lexical and phonemic learning (e.g., Giroux & Rey, 2009; Saffran, 
2001; Thiessen & Saffran, 2007) than it is for syntactic learning. That is, there are 
relatively fewer studies investigating how statistical learning is involved in the 
learning of syntactic regularities (though see Mintz, 2003; Onnis & Thiessen, 2013; 
Thompson & Newport, 2007; van den Bos, Christiansen, & Misyak, 2012). In part, 
this is due to the complexity of syntax, making artificial analogs of syntactic sys-
tems difficult to instantiate in a laboratory setting.

Another set of unsettled questions about the link between statistical learning and 
language acquisition relate to the nature of the processes or mechanisms underlying 
statistical learning. Sensitivity to conditional statistical relations has been studied in 
a wide variety of tasks. These tasks differ in their stimulus modality (e.g., audio vs. 
visual stimuli; Conway & Christiansen, 2006), the response expected of participants 
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(e.g., passively listening vs. regularly responding to some aspect of the input; Hunt 
& Aslin, 2001), and the kind of statistical structure they present to be learned (e.g., 
words vs. categories; Finn, Lee, & Hudson Kam, 2014). The diversity of these tasks, 
and the differences between them, raise the question of whether the “statistical 
learning” studied in these different tasks is accomplished by the same underlying 
mechanism; an alternative possibility is that different tasks assess different (poten-
tially completely independent) aspects of statistical learning.

To illustrate this point, consider the difference between tasks that assess condi-
tional statistical relations (such as transitional probability) in sequential or simulta-
neous input. Most experiments assessing statistical learning have focused on 
sequential conditional relations – that is, whether an element of the input predicts a 
subsequent element of the input (Saffran et al., 1996). But learners are also sensitive 
to conditional relations among simultaneously presented elements – that is, whether 
two items are likely to co-occur together, as in a visual scene (e.g., Fiser & Aslin, 
2005). Simultaneous conditional relations might be especially useful for discover-
ing aspects of linguistic structure that are expected to co-occur, such as the relation 
between a referent and its label (e.g., Smith & Yu, 2008). But the extent to which 
simultaneous and sequential statistical structure are learned by the same (or differ-
ent) underlying mechanism is an open question. Similarly, conditional statistical 
structure is present not only in linguistic or auditory input. Learners are sensitive to 
conditional statistical relations in many other kinds of stimuli, including musical 
tones (e.g., Saffran, Johnson, Aslin, & Newport, 1999), visual images (e.g., Kirkham, 
Slemmer, & Johnson, 2002; see also Johnson, this volume), and action sequences 
(e.g., Baldwin, Andersson, Saffran, & Meyer, 2008). Across these different kinds of 
input, however, there are important differences in the time course and output of 
learning (e.g., Conway & Christiansen, 2005; Slone & Johnson, 2015). It is as yet 
unclear whether these differences are due to differences in the underlying process of 
statistical learning or differences in the way that these stimuli are processed or rep-
resented independently of statistical learning (for discussion, see Frost, Armstrong, 
Siegelman, & Christiansen, 2015).

�Distributional Statistics

The question of whether statistical learning can be thought of as a single, unified 
process is magnified when we consider that conditional relations (such as those 
described by transitional probabilities) are not the only kind of statistical structure 
to which learners are sensitive. In addition to conditional structure, humans are also 
sensitive to a set of statistical properties that have been termed distributional statis-
tics (e.g., Thiessen et  al., 2013) or cross-situational statistics (e.g., Smith & Yu, 
2008) or summary statistics (e.g., Zhao, Ngo, McKendrick, & Turk-Browne, 2011). 
Broadly speaking, these terms refer to the ability to respond to the central tendency 
and variability of a set of exemplars (for a more extensive discussion, see Thiessen 
& Pavlik, 2013). Maye, Werker, and Gerken’s (2002) research on phonological 
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category learning provides a paradigmatic example of learning from distributional 
statistics. In their experiments, participants listened to a set of phonemes ranging in 
voice onset time from /d/ to (unaspirated) /t/. When exposed to a bimodal distribu-
tion, such that a prototypical /d/ and a prototypical /t/ occurred most frequently, 
infants were more likely to discriminate between /d/ and /t/. When exposed to a 
monomodal distribution, such that a sound intermediate between /d/ and /t/ occurred 
most frequently, infants were less likely to discriminate between /d/ and /t/. This 
work suggests that categorical boundaries can be shifted as a function of the distri-
bution of exemplars in the input (e.g., Maye, Weiss, & Aslin, 2008; Imai & Childers, 
this volume; Oakes & Spalding, 1997).

Sensitivity to the frequency with which phonemic exemplars occur may play a 
role in infants’ adaptation to the phonemic structure of the native language in the 
first year of life (e.g., Werker & Tees, 1984). Sounds near the prototypical center of 
a phonemic category that is productive within a language occur more frequently 
than sounds further from the center of the category or sounds that are ambiguous 
between two categories (Werker et al., 2007). The role of distributional statistics in 
language acquisition is not, however, limited to perceptual learning of sound cate-
gories. The frequency of exemplars in the input has been suggested to play a role in 
word learning (e.g., Thiessen & Yee, 2010; Tomasello, 2000) and in discovering 
syntactic regularities (e.g., Reber & Lewis, 1977). For each of these aspects of lan-
guage, identifying categories in the input is key, and sensitivity to the frequency of 
exemplars in the input provides a useful cue to category membership.

In addition to frequency of exemplars, learners are also sensitive to the variabil-
ity of exemplars in the input. When exposed to distributions with high variability, 
learners accept a wider range of exemplars as members of a category and are cor-
respondingly less certain about category membership when asked to make judg-
ments about stimuli near a category boundary for many kinds of stimuli, including 
both audio and visual stimuli (e.g., Clayards, Tanenhaus, Aslin, & Jacobs, 2008; 
Quinn, Eimas, & Rosenkrantz, 1993). When there is very low variability in the 
input, category boundaries are relatively sharper. Note that this discussion of sensi-
tivity to variation across exemplars suggests that learners are able to detect within-
category variation. Within-category differences were thought to be ignored 
according to classical theories of categorical perception (e.g., Liberman, Harris, 
Hoffman, & Griffith, 1957). Subsequent research, however, has demonstrated that 
learners are sensitive to within-category variation even with stimuli over which cat-
egorical perception can easily be obtained (e.g., McMurray, Tanenhaus, & Aslin, 
2002; Miller & Volaitis, 1989; Pisoni & Tash, 1974). This suggests that learners 
encode both the category identity of exemplars and idiosyncratic features that are 
not necessary for category identification. We will return to this notion of encoding 
specificity in the next section.

A final distributional feature of the input to which learners are sensitive is the 
context in which exemplars occur; these contextual details can also serve as cues to 
category membership. For example, Thiessen (2007) found that infants were better 
able to use the categorical distinction between phonemes (such as /d/ vs. /t/) in 
word-learning contexts if they had previously experienced the phonemes in distinct 
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lexical contexts (e.g., /d/ in doggy and diaper; /t/ in tiger and toothbrush). This is an 
example of a phenomenon known as acquired distinctiveness: when two similar 
stimuli occur in distinct contexts, learners distinguish between them more easily 
(Honey & Hall, 1989; James, 1890). This, in turn, makes learners more likely to 
treat the stimuli as members of different categories.

As with conditional statistical learning, there are a variety of unsettled questions 
about the nature of the mechanisms or processes underlying distributional statistical 
learning. Distributional learning, like conditional learning, has been measured with 
a variety of different tasks, and it is not clear that each of these tasks is tapping into 
the same set of processes (for discussion, see Perruchet & Pacton, 2006; Thiessen & 
Pavlik, 2016). Also, as with conditional statistical learning, it is clear that distribu-
tional statistical learning is available for many kinds of stimuli beyond linguistic 
stimuli, including nonlinguistic audio and visual stimuli (e.g., Dougherty & Haith, 
2002; Lotto, Kluender, & Holt, 1997). It is less clear that the same set of processes 
are at work in each of these modalities, as different types of stimuli can yield differ-
ent learning outcomes (e.g., Aslin & Newport, 2014; Johnson & Tyler, 2010; 
Saffran, Pollak, Seibel, & Shkolnik, 2007).

As this discussion indicates, many outstanding questions – for both conditional 
and distributional statistical learning – relate to the nature of the mechanisms or 
processes underlying learning (e.g., Frank, Goodman, & Tenenbaum, 2007; 
Thiessen et al., 2013). In the remainder of this chapter, we will argue that human 
memory presents a unifying framework for thinking about these different forms of 
statistical learning. Our claim is that statistical learning arises from processes that 
are necessary for memory, especially similarity-based activation, interference, 
and decay.

�Representing Variability Across Exemplars

In an environment with multiple, variable exemplars, learners face a fundamental 
challenge: the need to recognize familiar exemplars while also generalizing prior 
experience to novel exemplars. This tension is well illustrated by the comparison of 
two fundamental theoretical approaches to human memory, prototype models and 
exemplar models. In a prototype model, memory consists of a set of prototypes, 
which are the “most average” or “most representative” members of a category (e.g., 
Posner & Keele, 1968; Rosch, 1975). For example, the representation of the cate-
gory “dog” would consist of something like the “weighted average” of all the dogs 
a learner had ever seen in their life. This kind of representational system is excellent 
for generalization, because the representations that are stored are maximally similar 
to the distribution of category members in the environment. However, it is less use-
ful for recognizing individual exemplars that one has seen in the past, because the 
representations formed of a category consist solely of the average of the category, 
rather than of individual exemplars of that category. Exemplar memory models 
show a complementary pattern of strengths and weaknesses. In an exemplar memory 
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model, each individual exemplar a learner has experienced is stored in memory 
(e.g., Hintzman, 1984; Medin & Schaffer, 1978). This kind of memory system is 
excellent at recognizing familiar tokens, as each individual exemplar is stored in 
memory. However, it is less well suited to generalization. Because individual exem-
plars are stored in memory, rather than the average of a set of exemplars, novel 
exemplars may not be recognized as category members.

Exemplar memory models and prototype memory models were initially con-
ceived as in opposition to each other (e.g., Smith & Minda, 1998). However, decades 
of research assessing these competing theoretical accounts failed to yield conclusive 
evidence in favor of one approach over the other (for discussion, see Vanpaemel, 
2016). What this extensive body of research has done, though, is provide compel-
ling evidence supporting the claims of both exemplar and prototype theory. For 
example, exemplar theory is consistent with speaker specificity effects; that is, 
utterances are better recognized when they are spoken by the same speaker as pro-
duced them initially, rather than by a different speaker, indicating that our represen-
tations for speech incorporate speaker-specific idiosyncrasies (e.g., Goldinger, 
1998; Houston & Jusczyk, 2003). Conversely, there is ample evidence that humans 
form prototypical representations (e.g., Kruschke, 2005; Langlois & Roggman, 
1990; Principe & Langlois, 2012) and indications that for some experimental tasks, 
prototype models provide a better fit to human learning than exemplar models (e.g., 
Minda & Smith, 2002; though see Zaki, Nosofsky, Stanton, & Cohen, 2003).

The fact that there is evidence in favor of both exemplar theory and prototype 
theory makes a degree of intuitive sense. Both recognizing familiar items (a strength 
of exemplar models) and generalizing to related but novel items (a strength of pro-
totype models) are problems that organisms regularly face in the environment. As 
such, it is no great surprise that memory has developed in ways that facilitate solv-
ing both of these problems. Indeed, many current models of learning and memory 
involve representation of both exemplars and prototypes (e.g., Abbot-Smith & 
Tomasello, 2006; Smith, 2009; Thiessen & Pavlik, 2013). Some models accom-
plish this by using a single representational system, in which the representations 
can be recombined into prototypical, abstracted composites or maintained as sepa-
rate exemplars, depending on the nature of the input and the task (e.g., McClelland 
& Rumelhart, 1985; Thiessen & Pavlik, 2016). Other models accomplish this via 
dual representational systems: one system for encoding exemplars and the other 
for encoding prototypical representations (e.g., McClelland, McNaughton, & 
O’Reilly, 1995).

As this discussion indicates, the idea of representing both exemplars and proto-
types is not a novel one. We propose that the mechanisms and constraints provided 
by a system that encodes both exemplars and prototypes give rise to sensitivity 
to statistical structure in the input. That is to say, statistical learning is an emer-
gent property of the more general characteristics of memory. If this is the case, 
the function and development of the neurological systems supporting memory 
should have clear implications for our understanding of statistical learning. This 
is consistent with an emerging body of literature suggesting that the activity of 
the human memory system is related to performance in a wide array of statistical 
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learning paradigms composed of diverse stimulus characteristics (Batterink, 2017; 
Bornstein & Daw, 2012; Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 
2014; Schapiro, Kustner, & Turk-Browne, 2012; Schapiro, Rogers, Cordova, Turk-
Browne, & Botvinick, 2013; Schapiro, Turk-Browne, Norman, & Botvinick, 2016; 
Turk-Browne, Scholl, Chun, & Johnson, 2009; Turk-Browne, Scholl, Johnson, & 
Chun, 2010). In the next section, we will provide a broad overview of the neuro-
science of memory as well as explore the consequences of the organization of this 
system for our understanding of statistical learning.

�Encoding and Generalization in Memory

To account for sensitivity to prototypicality, the memory system must have some 
way of combining information across multiple representations. To illustrate how 
these processes work together, we will focus on a classic theory that attempts to 
explain how neural function gives rise to processing that is needed in statistical 
learning, the complementary learning system (CLS) hypothesis (McClelland et al., 
1995). CLS theory posits that memory is divided into two distinct systems with 
complementary properties. The first system creates sparsely coded representations 
(i.e., all stimuli represented by a unique subset of neurons) that are robust to inter-
ference from future learning. This system is crucial for maintaining separate repre-
sentations of events that share many similarities – for instance, remembering one’s 
parking spot in a frequently visited parking lot – but it is not well suited for learning 
about the regularities that persist across these events because highly similar events 
are represented as distinct entities. The medial temporal lobe (MTL), especially the 
hippocampal formation (HF), is generally agreed to be the locus of pattern-separated 
representation (Bakker, Kirwan, Miller, & Stark, 2008; Clelland et al., 2009; Gilbert, 
Kesner, & Lee, 2001; Leutgeb, Leutgeb, Moser, & Moser, 2007; McHugh et al., 
2007). A separate system with highly overlapping distributed representations, the 
neocortex, is ideal for uncovering statistical regularities because memories that 
share common features are represented similarly (Hinton, McClelland, & Rumelhart, 
1986). As such, the CLS framework posits that the MTL and neocortex work 
together to support a highly flexible and adaptive memory system.

The CLS framework argues that statistical learning is the outcome of informa-
tion consolidation in the neocortex (O’Reilly, Bhattacharyya, Howard, & Ketz, 
2014; Winocur, Moscovitch, & Bontempi, 2010). The MTL rapidly encodes 
detailed, context-specific representations of the episodic content using a sparse 
coding system. The DG and CA3 subregions can employ a sparse coding system in 
which similar stimuli are represented by a unique subset of neurons because of the 
incredibly large number of neurons present in these subregions. When the neocortex 
receives projections from the MTL, the information is slowly transformed to accom-
modate a distributed coding system. The neocortex employs a distributed coding 
system because of the relatively small number of neurons available in this region 
compared to the DG and CA3. A distributed coding system, in which stimuli are 
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represented over a larger number of neurons and the same set of neurons can partici-
pate in the representation of multiple pieces of information (i.e., population coding), 
is ideal for brain regions with fewer neurons. In this case, the most common features 
of the input are encoded across many neurons, and idiosyncratic details that are 
rarely encountered are discarded. This coding scheme naturally highlights similar-
ity structures, enabling the neocortex to uncover the underlying statistical regulari-
ties that characterize the input. For instance, consider the parking lot example. The 
MTL encodes a particular day’s parking location, whereas the neocortex stores all 
memories of previous parking locations within this parking lot. The neocortex 
serves as a general map of the most frequent parking locations. The CLS framework 
takes advantage of the unique connectivity between MTL and neocortex to address 
two issues commonly found with distributed coding schemes: to integrate new 
memories without overwriting old memories, there must be a system in place to 
mitigate interference from competing memories (e.g., AB-AC learning paradigm) 
and prevent catastrophic forgetting of old memories (McClelland et  al., 1995; 
Rogers & McClelland, 2004). However, the CLS framework has been criticized for 
its claim that the discovery of regularities (via overlapping representations) relies on 
the cortex, which is thought to be a slower learning system – requiring hours or days 
to consolidate information (for discussion, see Norman & O’Reilly, 2003). This is 
somewhat inconsistent with evidence that learners can identify regularities from 
overlapping representations over the course of only a few minutes (e.g., Schapiro 
et al., 2016).

�Memory and Statistical Learning

While recent research on the neuroscience of memory (e.g., Schapiro et al., 2016) 
suggests that CLS theory (McClelland et al., 1995) provides an overly simplified 
view of the memory system, the theory illustrates the important tension and interac-
tion between representing specific instances (sparse coding) and generalizing from 
those instances (distributed coding). In the final section of this chapter, we will 
provide a brief mechanistic outline of how statistical learning emerges from this 
dynamic interaction between representation and generalization and highlight a set 
of questions that this perspective raises. To ground this discussion, we will first 
attempt to explain conditional statistical learning (as in a word segmentation task), 
before turning our attention to distributional statistical learning.

When presented with a stream of continuous input, as in the sequence of sylla-
bles that comprise an artificial language in a segmentation task (e.g., golabubidaku-
tupiro…), learners extract a series of discrete representations (e.g., go, labu, bidaku, 
tupi, and ro). Initially, these representations are extracted randomly, as learners have 
no knowledge of the statistical structure of the input (e.g., Perruchet & Vinter, 
1998). As the learner proceeds through the input, these representations are strength-
ened if the learner experiences them again and decay if the learner does not. Syllable 
groupings that are less likely to occur (i.e., syllable pairs that only occur across 
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word boundaries) are less likely to be strengthened than are syllable groupings that 
occur frequently (i.e., the syllable groupings contained within a word). Over time, 
then, the representations that are most active in memory are those representations 
that correspond to frequent groupings of syllables seen in the input.

However, humans are sensitive not only to frequency; they are also able to distin-
guish high-probability sequences from low-probability sequences, even when those 
sequences occur equally often (e.g., Aslin et al., 1998). To capture this ability, we 
must incorporate interference, a well-known property of memory (e.g. Keppel & 
Underwood, 1962; Melton & Von Lackum, 1941). If two representations overlap 
with each other (e.g., they contain a syllable in common), then there may be inter-
ference between them, such that the strengthening of one representation results in 
the weakening of another. Because the foil items used in statistical learning tasks 
invariably involve a syllable drawn from multiple words, these items face interfer-
ence from each of the words from which their syllables were drawn. Conversely, 
because words in these statistical learning tasks typically do not contain syllables 
that overlap with other words, these items do not face interference from other strong 
representations. This results in a set of representations where words are more 
strongly active than foil items (for discussion, see Perruchet & Vinter, 1998; 
Thiessen et al., 2013). Thus, memory processes can explain conditional probability 
learning (or learning the co-occurrence of items).

Similarly, memory processes are capable of explaining distributional statistical 
learning (or learning about the central tendency and variation of a set of items). To 
see how, we need to invoke one more critical component of memory: similarity-
based activation. That is, when a cue is presented, the items in memory that are 
activated are those most similar to the cue (for discussion, see Hintzman, 1984). 
When multiple memory traces are activated, we propose (Thiessen & Pavlik, 2013) 
that information across the traces is integrated together – consistent with the prin-
ciples of a distributed coding system – such that features which are consistent across 
the traces are enhanced while features that are inconsistent tend to cancel each other 
out; the resulting integrated information captures the central tendency of the inte-
grated traces.

To see how this can explain distributional statistical learning, consider acquired 
distinctiveness, in which experience with two similar stimuli in distinct contexts 
makes them more discriminable. For example, children of around 18 months strug-
gle to use phonemic contrasts (such as voicing in /d/ vs. /t/) in a label-object pairing 
task (Stager & Werker, 1997). But exposure to the contrast in distinct lexical con-
texts (e.g., /d/ and /t/ in dawbow and tawgoo) improves their performance, while 
exposure to the contrast in identical lexical contrasts (e.g., dawgoo and tawgoo) 
does not (Thiessen, 2007). We propose (Thiessen & Pavlik, 2013) that this is due to 
the effect of integrating information across multiple memory traces. When infants 
are exposed to /d/ and /t/ in identical lexical contexts, the resulting memory traces 
that are associated with both phonemes are quite similar. By contrast, when infants 
are exposed to /d/ and /t/ in distinct lexical contrasts, testing with /d/ mostly acti-
vates memories of one lexical context, while testing with /t/ mostly activates 
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memories of a different lexical context. As such, the representations that arise from 
exposure to /d/ and /t/ are “pulled apart,” becoming more distinct. This increased 
distinctiveness makes it easier for infants to take advantage of the contrast.

A memory-based approach to statistical learning also provides a unified frame-
work for thinking about the relation between conditional and distributional statisti-
cal learning. These two processes are clearly related, as conditional statistical 
learning is influenced by the regularities across a set that learners have extracted 
(via distributional statistical learning) from the input. One piece of evidence for this 
is that learners from different language backgrounds extract different statistical 
clusters from the same input (e.g., Onnis & Thiessen, 2013). These effects can even 
be observed in a brief laboratory intervention. For example, after exposure to a set 
of bisyllabic words, learners are better at extracting bisyllabic words from statistical 
relations than at extracting trisyllabic words (Lew-Williams, Pelucchi, & Saffran, 
2011). Similarly, after learning that words are likely to follow a specific lexical 
stress pattern (e.g., trochaic stress), learners are better able to identify words in flu-
ent input that follow that stress pattern than words that violate it (Thiessen & 
Saffran, 2007).

Viewing both conditional and distributional learning within a memory-based 
framework provides a way to explain how these processes interact with each other. 
Once learners have extracted a set of words from the input, they can identify the 
regularities that characterize these words via distributional learning – that is, because 
these words are represented by overlapping neural populations, the features that are 
consistent across these words become strengthened. Once learners have identified a 
regularity that characterizes the words that they know, subsequently learning further 
words that conform to this regularity is facilitated. We propose that this is due to the 
effect of attention, which can influence the process of segmenting words from fluent 
input (e.g., Toro et al., 2005). Only elements of the input that are simultaneously 
held together in working memory can be bound together and extracted as a represen-
tation (e.g., Baker et al., 2004). Once a learner has discovered a phonological regu-
larity that characterizes several familiar words, they begin to preferentially attend to 
syllable groupings that obey this regularity (e.g., Jusczyk, Cutler, & Redanz, 1993).

Moreover, viewing statistical learning as an emergent property of memory pro-
cesses brings several questions and avenues of exploration into sharp relief. As we 
have discussed before, one of the primary questions related to statistical learning is 
about the nature of the underlying mechanisms. Our proposal is that these mecha-
nisms are processes endemic to memory, such as activation, decay, and interference. 
If this proposal is correct, the characteristics of the memory system should be 
informative about the process and outcome of statistical learning. For example, dif-
ferences in statistical learning tasks as a function of modality (e.g., Conway & 
Christiansen, 2005) may be explicable in terms of differences in the way that input 
is encoded into memory as a function of modality (e.g., Jensen, 1971; Penney, 
Gibbon, & Meck, 2000). Similarly, the developmental time course of statistical 
learning should be shaped by the maturation of the neurological systems underly-
ing memory.
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Chapter 5
Structure-Mapping Processes Enable 
Infants’ Learning Across Domains 
Including Language

Susan J. Hespos, Erin Anderson, and Dedre Gentner

Abstract  Humans have an astounding ability to acquire new information. Like 
many other animals, we can learn by association and by perceptual generalization. 
However, unlike most other species, we also acquire new information by means of 
relational generalization and transfer. In this chapter, we explore the origins of a 
uniquely developed human capacity—our ability to learn relational abstractions 
through analogical comparison. We focus on whether and how infants can use ana-
logical comparison to derive relational abstractions from examples. We frame our 
work in terms of structure-mapping theory, which has been fruitfully applied to 
analogical processing in children and adults. We find that young infants show two 
key signatures of structure mapping: first, relational abstraction is fostered by com-
paring alignable examples, and second, relational abstraction is hampered by the 
presence of highly salient objects. The studies we review make it clear that structure-
mapping processes are evident in the first months of life, prior to much influence of 
language and culture. This finding suggests that infants are born with analogical 
processing mechanisms that allow them to learn relations through comparing 
examples.

Turning to very early learning, we augmented our account by considering the 
nature of young infants’ encoding processes, leading to two counterintuitive predic-
tions. First, we predicted that young infants (2–3 months old) would be better able 
to form a relational abstraction when given two alternating exemplars than when 
given six different exemplars (Anderson et al. Cognition 176:74–86, 2018). This is 
based on the assumption that young infants may initially focus on the individual 
objects and shift to noticing the relation between them after repetition of the 
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exemplar (Casasola. Child Development 76(1):279–290, 2005a; Casasola. 
Developmental Psychology 41:183–192, 2005b). Second, we predicted that 
younger, but not older, infants would be able to form a relational abstraction from 
one repeated exemplar; this follows from the assumption that young infants have 
unstable encoding processes, so identical exemplars may be variably encoded 
(Anderson et al. 2019).

Next, we revisited Premack’s insight from 1983 that the tasks used to measure 
analogical abilities (RMTS, MTS, and same/different discrimination) are vastly dif-
ferent from each other. The takeaway from this section is that while many species 
can learn through association and perceptual generalizations, there are relatively 
few species that can succeed in the same/different discrimination task. Of these spe-
cies that can succeed in the same/different task, humans are unique in that they need 
fewer than 10 trials to learn such relations. In the final sections, we reviewed how 
structure mapping extends to language acquisition, artificial grammar learning, and 
physical reasoning. The value of investigating the origins of our analogical abilities 
is that we will be in a better position to understand how language and culture capi-
talize on cognitive abilities. More broadly, we can address whether essential differ-
ences between humans and other species are evident from the earliest points in 
development.

Humans have an astounding ability to acquire new information. Like many other 
animals, we learn by association and by perceptual generalization. However, unlike 
most other species, we also acquire new information by means of relational gener-
alization and transfer. In this chapter, we will explore the origins of a uniquely 
developed human capacity—our ability to learn relational abstractions through ana-
logical comparison. We focus on whether and how infants can use analogical com-
parison processes to derive relational abstractions from examples.

By analogical comparison, we mean a comparison process in which the rela-
tional structure of the two items is aligned, as described in Gentner’s structure-
mapping theory (Gentner, 1983, 1989, 2010; Markman & Gentner, 1997). At first 
glance, the idea that infants might use analogical processes may seem absurd. After 
all, analogy is considered a sophisticated process even in adults. Further, there is a 
methodological challenge in studying whether prelinguistic infants can make ana-
logical comparisons. Fortunately, decades of research have revealed general signa-
tures of relational alignment and learning; thus, we can compare the performance of 
infants with established signatures of analogical processing.

The value of this pursuit is in allowing us to discover the roots of relational cog-
nition. Adults’ ability to use abstract categories and rules is supported by a vast store 
of conceptual knowledge, influenced by the culture that surrounds us and the 
languages we speak, as well as by real-world experience. To gain an understanding 
of the nature and origin of our extraordinary relational ability, we must investigate 
infants who have had less exposure to culture and language. If we can specify how 
infants learn relations from multiple examples, then we will be in a better position 
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to understand how language and culture capitalize on these existing cognitive abili-
ties and how our cognitive processes compare to those of other species.

Our field is only beginning to study the origins of human analogical ability. However, 
there has been considerable research on the development of analogical ability from pre-
school to adulthood. We briefly review this research to set the stage for examining what 
characteristics might be evident in infants. In general, children’s comparison processing 
shows a relational shift whereby children focus on object matches early in learning and 
focus increasingly on relational commonalities as they gain in domain knowledge 
(Gentner, 1988; Gentner, Anggoro, & Klibanoff, 2011; Gentner & Rattermann, 1991; 
Gentner & Toupin, 1986; Paik & Mix, 2006, 2008; Richland, Morrison, & Holyoak, 
2006). For example, Gentner and Rattermann (1991, Experiment 1) asked 3- to 5-year-
old children to find a hidden sticker. The experimenter had three pots of increasing 
sizes in a row in front of them. The child had a similar series of three pots in front of 
them. On each trial, the experimenter secretly hid an object under one of the child’s 
pots. Then, while the child watched, the experimenter placed a sticker under one of her 
pots. The stickers were always placed in the same relative position—left (smallest), 
middle (medium), or right (largest)—and the child was told that by watching where the 
experimenter put a sticker, they could find their sticker. Three-year-olds succeeded 
when identical objects occupied the same relational roles. The interesting manipulation 
was when the sizes of the pots were shifted, such that the experimenter had a small, 
medium, and large pot and the child had a medium, large, and extra-large pot. This 
arrangement sets up a cross-mapping—a case in which there is an object match that 
competes with the desired relational match (Gentner & Toupin, 1986; Ross, 1989). 
Cross-mapped analogies provide a stringent test of children’s understanding of the 
relational match. In Gentner and Rattermann’s study, younger (3-year-olds) children 
performed at chance, repeatedly choosing the object match, while older children 
(5-year-olds) chose the relational match.

Gentner and colleagues have argued that the relational shift is not age-linked, but 
rather results primarily from increases in relational knowledge (see also Gentner, 
1989, 2003, 2010; Gentner & Medina, 1998; Gentner & Rattermann, 1991). As 
evidence for this claim, Gentner and Rattermann (1991, Table 7.5, p. 250) offered 
examples of the relational shift taking place between 4 and 6 months in an occlusion 
event (Baillargeon, 1994), between 3 and 4 years old (the Gentner and Rattermann 
task described above), and between 6 and 9 years old in a story-enacting task involv-
ing social causation (Gentner & Toupin, 1986). As further evidence that the shift is 
largely driven by knowledge, rather  than maturational processes, Gentner and 
Rattermann showed that 3-year-olds could succeed on this task when provided with 
relational labels for the object sets (e.g., daddy, mommy, baby). This suggests that 
the 3-year-olds in the initial study were limited not by age-related processing con-
straints, but by the lack of a relational knowledge schema in this task (see also 
Loewenstein & Gentner, 2005). Other researchers have linked the relational shift to 
maturational increases in processing capacity (Halford, 1992) and to increases in 
executive ability, including inhibitory control (Doumas, Hummel, & Sandhofer, 2008; 
Richland et al., 2006; Thibaut, French, & Vezneva, 2010), and it is possible that all 
three factors play a role.
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This work has also revealed characteristic patterns of analogical learning, includ-
ing factors that facilitate and hinder the relational learning process. One signature 
component of relational learning is that the ability to perceive abstract relational 
matches can be enhanced by comparing instances of a relation. For example, Gick 
and Holyoak (1983) found that comparing two stories that had the same abstract 
causal structure enabled people to generalize that structure and to transfer it to a 
further situation. Similar effects of comparison have been found for preschool chil-
dren in relational tasks (e.g., Christie & Gentner, 2010; Gentner et al., 2011; Gentner 
& Namy, 1999; Namy & Clepper, 2010). These findings are consistent with the struc-
ture-mapping theory (Gentner, 1983; Gentner & Forbus, 2011; Gentner & Markman, 
1997) account that the act of comparison entails a structural alignment process. In 
structural alignment, the two analogs are aligned in such a way that the common rela-
tions are placed into correspondence. Once a structural alignment is achieved, the 
relational commonalities between the items are highlighted (Markman & Gentner, 
1993; see also Gentner, 2010). In addition, further inferences may be projected, and 
certain differences may be highlighted; however, in this chapter, we focus on the role 
of structural alignment in revealing commonalities. The influence of structural align-
ment is a defining characteristic of analogical reasoning in adults (Doumas & 
Hummel, 2013; Forbus, Ferguson, Lovett, & Gentner, 2017; Gentner, Holyoak, & 
Kokinov, 2001) and the evidence of its influence in children as young as 3 years of 
age suggests a possible continuity in relational processing through human develop-
ment. In this chapter, we explore whether this continuity extends to infants.

The Gentner and Rattermann study also exemplifies a second signature of ana-
logical processing: namely, that attention to individual objects can interfere with 
relational processing. The 3-year-olds in these studies were able to carry out the 
mapping quite well when the objects matched but failed when there were competing 
object matches (unless given support from relational language). There are many 
studies showing that preschool children perform far worse on relational matching 
tasks when competing object matches are present (Gentner & Toupin, 1986; 
Richland et  al., 2006), especially if the objects involved are rich and distinctive 
(DeLoache, 1995; Gentner & Rattermann, 1991; Paik & Mix, 2006). For example, 
children can pass the relational match-to-sample (RMTS) task (exemplified on the 
left in Fig. 5.1) at 4.5 (Christie & Gentner, 2014) or 5 years of age (Hochmann, 
Mody, & Carey, 2016). However, when Christie and Gentner (2007) gave children 
and adults a version of the RMTS task in which there was a competing object match 
(see the right side of Fig.  5.1), the results showed a steep gradient across age: 
4.5-year-olds chose the relational match only 17% of the time, 8.5-year-olds per-
formed at chance (50%), and adults chose the relational match 90% of the time.

The finding that attention to objects can overshadow attention to relations has 
also been found in word-learning tasks (Casasola, 2005a; Maguire, Hirsh-Pasek, 
Golinkoff, & Brandone, 2008). In the work we will describe below, we focus on 
infant relational learning and ask whether it is similarly facilitated by comparison 
and hindered by object focus. Finding substantive evidence for the signatures of 
analogical reasoning in infants would suggest that the relational process is continu-
ous through development.
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The existing literature on the development of analogical abilities highlights the 
role of linguistic symbols in facilitating relational learning (Gentner, 2003, 2010; 
Gentner & Rattermann, 1991). There is evidence that children’s relational insight is 
improved by having symbolic labels for relations and relational systems (Carey, 
2010; Christie & Gentner, 2014; Gentner, 2005; Hermer & Spelke, 1994; 
Loewenstein & Gentner, 2005; Pyers, Shusterman, Senghas, Spelke, & Emmorey, 
2010; Son, Doumas, & Goldstone, 2010). There is also considerable evidence that 
common labels can prompt children (and adults; see Lupyan, 2012) to compare 
referents and abstract the commonalities they share, for concrete nouns (Ferry, 
Hespos, & Waxman, 2010; Gentner & Namy, 1999; Liu, Golinkoff, & Sak, 2001; 
Namy & Gentner, 2002), relational nouns (Gentner, 2005; Gentner et  al., 2011), 
adjectives (Waxman & Klibanoff, 2000), and verbs (Haryu, Imai, & Okada, 2011; 
Waxman et al., 2013; see Gentner & Namy, 2006, for a review). More specifically, 
there is evidence that relational language, such as verbs, prepositions, and compara-
tive adjectives, can foster retaining and transferring relational patterns (Casasola, 
2005b; Childers, 2011; Christie & Gentner, 2014; Gentner et al., 2011; Hermer & 
Spelke, 1994; Jamrozik & Gentner, under review; Loewenstein & Gentner, 2005; 
Pyers & Senghas, 2007; Son et al., 2010). While it is clear that language plays a 
critical role in relational learning and reasoning in children and adults, the focus of 
this chapter will be on infants’ prelinguistic abilities, prior to much influence from 

Fig. 5.1  On the left is a sample triad from Christie and Gentner (2014). They found 4.5-year-olds 
chose the relational match significantly more often than chance. On the right is a sample trial that 
contains a competing object match from Christie and Gentner (2007), and the pattern of results was 
very different. In trials with a competing object match (the green and orange circles), 4.5-year-olds 
preferred the object match, adults chose the relational match, and 8.5-year-olds were in the middle; 
their performance was not different from chance
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language and culture. If we see evidence of relational learning in early infancy, then 
we can infer that these processes exist prior to the acquisition of language. Moreover, 
such findings would put us in a better position to understand how language learning 
may capitalize on this preexisting relational ability.

The central question in this chapter is how human analogical ability arises. More 
specifically, when and how does our ability to derive relational abstractions from 
examples arise? One possibility is that we are born with a core set of abstract rela-
tions, which we can perceive in specific examples. Such a set would almost cer-
tainly include the relations same or different (Christie & Gentner, 2014; Hochmann 
et al., 2017; Wasserman, Castro, & Fagot, 2017). A second possibility is that infants 
are born with an analogical processing mechanism that allows them to learn rela-
tions through comparing examples. A third possibility is that analogical ability 
develops by combining other abilities through cultural and linguistic experience. To 
decide among these proposals, we focus on the same-different relation. The rela-
tions of same and different are among the simplest and most basic relations in the 
human repertoire and are therefore a logical starting point.

Possibility (1)—that we are born with a core set of abstract relations—has been 
widely assumed, based on a highly cited study by Tyrrell, Stauffer, and Snowman 
(1991). Tyrrell et al. (1991), using a preferential looking paradigm, reported that 
7-month-old infants encode abstract same and different relations without training, 
simply from exposure to a single exemplar. However, examination of the reported 
results revealed ambiguity as to whether infants genuinely abstracted the relation. 
We therefore replicated Tyrrell et  al.’s methods with the same age group (Ferry, 
Hespos, & Gentner, 2015). The results showed no evidence for relational abstrac-
tion. Infants showed a novelty response when comparing the identical pairs they had 
seen (e.g., AA) with a new pair (BC), but when the familiarized relation and the 
competing relation were tested with new objects (e.g., XX vs. YZ), the infants 
showed no preference. Thus, there is no evidence that these infants formed a rela-
tional abstraction from one exposure.

Next, we tested the second proposal: whether infants are capable of learning an 
abstract relation by structural alignment across exemplars. We showed infants a 
sequence of four exemplars of same or different toys. Half the infants saw same 
pairs (e.g., AA, BB, CC, DD), and half saw different pairs (AB, CD, BC, DA), 
repeated until infant looking declined sufficiently to demonstrate habituation (about 
6–9 pairs). We then showed infants a sequence of six test trials. On alternating trials, 
infants saw pairs of objects that were either the same or different, and the dependent 
measure was the duration of infants’ looking times. The key question was whether 
infants would look longer at the novel relation (AA vs. AB), even when instantiated 
with new objects (XX vs. YZ). Indeed, that is what happened, both for infants habit-
uated to same and for those habituated to different—evidence that they had abstracted 
the common relation across the habituation pairs (see Fig. 5.2).

This ability to learn an abstract relation from a series of examples is one signa-
ture of analogical learning in older children and adults. We also tested the second 
signature of relational learning—whether object salience would interfere with 
structural alignment. Prior to the experiment, we gave infants a brief exposure to a 
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subset of the objects used in test trials, thus increasing the salience of these indi-
vidual objects. We found that infants failed to discriminate between the same and 
different relations when the test pairs contained objects that had been rendered indi-
vidually salient prior to habituation—consistent with the findings among older chil-
dren, for whom object salience interferes with analogical comparison (Gentner & 
Toupin, 1986; Paik & Mix, 2006). These findings suggest that by 7 months, infants 
show the basic characteristics of analogical learning—their learning was facilitated 
by comparison across examples and hindered by object focus. We interpret these 
findings as showing that the analogical processing ability is present in the first year 
of life and may be continuous through development.

Given our non-replication of the Tyrrell et  al. study, we cannot assume that 
infants have a preexisting relational vocabulary that they can apply to examples in 
the world. Rather, our studies provide evidence that infants have a relational pro-
cessing mechanism that can compare across examples to form abstract relations. 
These findings also argue against the third possibility that analogical ability arises 
through combining other capacities and experiences. Although language and 
conceptual learning refine and extend our analogical abilities, these abilities are 
present before extensive cultural and linguistic experience.

Our next study tested for relational abstraction at the earliest age possible to 
serve as a base for capturing developmental changes and variability in the learning 
process across age groups. Anderson, Chang, Hespos, and Gentner (2018) tested 
3-month-old infants—the earliest age at which infants have the neck control to par-
ticipate in a looking-time paradigm. As in the prior study, the key dependent mea-

Fig. 5.2  Schematic of 
events in Ferry et al. 
(2015). (a) In the waiting 
room, infants saw a subset 
of the individual toys 
before the experiment. (b) 
Infants were habituated to 
four pairs of objects, either 
same or different. (c) In six 
sequential test trials, 
looking time was recorded 
to the novel and familiar 
relational pairs in three 
different types of test trials

5  Structure-Mapping Processes Enable Infants’ Learning Across Domains Including…



schrist3@swarthmore.edu

86

sure is whether infants are able to differentiate the familiar relation (e.g., same, if 
habituated to same) from the unfamiliar one (e.g., different) when they see test pairs 
composed of new objects. The specific predictions were that if infants are learning 
by comparison, then (1) relational learning should benefit from comparing a series 
of analogous exemplars and (2) performance on test pairs should be hampered for 
pairs that contain objects that were rendered individually salient through object 
experience in the waiting room prior to the experiment.

Learning theories broadly agree that increasing the variability in a set of exem-
plars should lead to a greater range of transfer (Markman & Wisniewski, 1997; 
Rogers & McClelland, 2005; Wasserman, Young, & Fagot, 2001; Xu & Tenenbaum, 
2007). Following this logic, young infants may require a larger training set than the 
four exemplars given to older infants in Ferry et al.’s (2015) study. Therefore, in one 
study, we increased the number of exemplars seen in habituation to six.

But there is an alternate possibility. Because alignment of relational structure is 
the sine qua non for discovering new relational commonalities, the ability to suc-
cessfully compare and align is a prerequisite for relational learning. As discussed 
below, some studies have found that increasing the number and variability of exam-
ples can be detrimental to young children’s relational learning (Casasola, 2005a; 
Maguire et al., 2008). To allow for this possibility, in our second experiment, we 
gave infants two exemplars that alternated across habituation (see Fig. 5.3).

The results revealed no evidence of learning the relation when 3-month-old 
infants were presented with six exemplars. However, the infants did learn the rela-
tion when they were presented with two alternating exemplars during habituation 
trials. In the two-exemplar condition, the 3-month-olds showed the key signature of 
analogical abstraction: they looked significantly longer at the novel relation during 
test even when that relation was instantiated with new objects, thus suggesting that 
they were able to transfer the relation to objects that they had not seen previously. In 
addition, there was evidence that object focus hindered learning. As in our prior 
studies, there was no difference in looking time between the novel and familiar rela-
tions when instantiated by objects that had been made individually salient through 
pre-exposure. Further, there was a significant difference in performance across test 
trial types that contrasted pairs seen in the waiting room before the experiment and 
new objects. These findings show that the signatures of analogical learning are pres-
ent not only at 7 months (Ferry et al., 2015) but also by 3 months of age (Anderson 
et al., 2018). Clearly, language is not a necessary prerequisite for relational process-
ing—the ability to carry out structural alignment and abstraction is in place prior to 
and independent of language. In contrast to the possibility that relational knowledge 
depends on language, we speculate that language may capitalize on the relational 
processes and may be used in learning grammatical structures (Gentner, 2010; 
Gentner & Namy, 2006).
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�When Is High Variability Helpful and When Not?

Across these studies, we have found evidence that infants can abstract a common 
relation from a sequence of examples. At 7–9 months, infants formed a relational 
abstraction from four exemplars. At 3 months, infants formed a relational abstrac-
tion with two alternating exemplars but not with six exemplars. This second find-
ing—that 3-month-olds were better at forming an abstraction with two exemplars 
than with six—seems at odds with the many findings in both animal and human 
learning that have found that increasing the number and variability of exemplars 
promotes generalization (Cooper, Heron, & Heward, 2007; Thompson, Oden, & 
Boysen, 1997; Wasserman & Young, 2010).

The existing developmental literature reveals many studies that have found better 
learning with more exemplars (Bomba & Siqueland, 1983; Casasola & Park, 2013; 
Castro, Kennedy, & Wasserman, 2010; Gerken, 2006; Gerken & Bollt, 2008; 
Gomez, 2002; Needham, Dueker, & Lockhead, 2005; Quinn & Bhatt, 2005). Yet, 
there are a few studies that align with the “less is more” pattern (Bulf, Johnson, 

Fig. 5.3  Schematic of events in Anderson et al. (2018). In Experiment 1 on the left, infants saw 
six exemplars during habituation trials. In Experiment 2 on the right, infants saw an alternation 
between two exemplars. (a) In the waiting room, infants saw a subset of the individual toys before 
the experiment. (b) Infants were habituated to pairs of objects, either same or different. (c) In 
sequential test trials, looking time was recorded to the novel and familiar relational pairs across 
different types of test trials
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& Valenza, 2011; Casasola, 2005a; Gerken & Quam, 2017; Maguire et al., 2008). 
These findings suggest a divide between studies in which the desired generalization 
depends on common object properties and those in which the desired generalization 
depends on relational commonalities. In the former case, more variability generally 
helps to broaden the generalization. But in order to form a relational abstraction, the 
learner must be able to carry out structural alignment over the exemplars. If the 
exemplars look very different from one another, the learner may fail to align them. 
For example, in our studies with 3-month-olds, infants could form a relational 
abstraction when given two alternating exemplars, but not when given six examples. 
We suggest that repeated exposure to two exemplars allowed the infants to go 
beyond noticing only the individual objects to also encode the relations, which 
could then be aligned across exemplars (see Casasola, 2005a, for a similar account).

The standard learning principle—“breadth of training predicts breadth of trans-
fer”—is a useful rule, widely applicable for relatively concrete categories. But 
because alignment of relational structure is essential for discovering new relational 
commonalities, the ability to successfully compare and align is a prerequisite for 
relational learning (Anderson et  al., 2018; Gentner & Hoyos, 2017). Thus, as 
Gentner and Hoyos (2017) noted, the standard principle must be amended for rela-
tional learning to be “breadth of alignable training predicts breadth of transfer.”

�Promoting Relational Learning

As noted above, structural alignment is essential to relational abstraction. But it 
remains true that breadth of training (in this case, alignable training) will increase 
generalization. Is there a way to have it both ways? Can we ensure alignment while 
increasing the number and variability of exemplars in infant relational learning 
tasks? Research on older children suggests that progressive alignment (Kotovsky & 
Gentner, 1996) provides a way to do this. In progressive alignment, relational learn-
ing is facilitated by initially giving children highly similar (and readily alignable) 
exemplars of a relation before presenting them with more surface-dissimilar pairs 
(Childers, Parrish, Olson, Fung, & McIntyre, 2016; Gentner et al., 2011; Gentner, 
Loewenstein, & Hung, 2007; Haryu et al., 2011; Hoyos, Horton, & Gentner, under 
review; Kotovsky & Gentner, 1996; Loewenstein & Gentner, 2001). These initial 
pairs with their highly similar corresponding objects are likely to be spontaneously 
aligned, and this alignment boosts the salience of the common relation (Gentner & 
Namy, 1999; Namy & Gentner, 2002). Note that progressive alignment operates 
quite differently from the alternation technique used by Anderson et al. (2018), in 
which repetition reduced the salience of the objects. In progressive alignment, close 
surface matches are used to seed comparison and promote initial alignment and 
thereby increase relational focus. Thus, in the progressive alignment condition, the 
infants would be presented with a series of six pairs in which the first pairs are 
highly similar to each other; then the variability will increase (a schematic depiction 
for habituation to same would be OO, QQ, CC, SS, WW, FF).
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A second prediction is based on the idea that if comparison is critical for rela-
tional learning, then infants would never be able to learn a relation from a single 
example. This is consistent with our non-replication of Tyrrell et  al. (1991). 
However, it is possible that the higher-order process of analogical comparison could 
interact with low-level encoding processes. In a recent set of experiments, we made 
the following counterintuitive prediction: for very early learners, even one example 
might be perceived as many due to immature/inconsistent encoding (Anderson, 
Hespos, & Gentner, 2019). This prediction is based on the assumption that infants’ 
early encoding processes are unstable, resulting in variable encodings of the same 
external situation. This means that for the young infant, multiple exposures of a 
single example could be perceived as a series of highly similar pairs that share an 
alignable relational structure. In contrast, older infants who have a more stable abil-
ity to encode would recognize the repeated single example and would fail to learn 
the relation. We found that 3-month-old infants were indeed able to generalize a 
same or different relation from a single pair that was repeated over the course of 
habituation. In contrast, 7- and 9-month-olds did not generalize, though they did 
successfully distinguish the habituation pair from a novel pair. These findings are 
consistent with the idea that comparison is important to relational abstraction but 
highlight that comparison processes operate over representations that vary accord-
ing to the learner’s level.

�What Paradigms Are Usually Used to Test Our Theory?

Relational learning paradigms have a diverse and extensive history stretching far 
back into the comparative literature. As Premack (1983) pointed out, three tasks that 
might seem to recruit similar processes are in fact vastly different in the ease with 
which animals can master them. The easiest is the object match-to-sample (MTS) 
task (given A, choose A over B), which can be passed by many species, including 
pigeons, macaques, and honeybees, as well as by 14-month-old human infants 
(Fagot & Thompson, 2011; Flemming, Beran, & Washburn, 2007; Giurfa, Zhang, 
Jenett, Menzel, & Srinivasan, 2001; Hochmann et al., 2016; Thompson et al., 1997; 
Wasserman & Young, 2010). In contrast, the relational match-to-sample (RMTS) 
task (given AA, choose XX over YZ; given BC, choose YZ over XX)1 is far more 
challenging. The set of species that succeeds in the RMTS task is far smaller than 
the set that succeeds in object matching. So far, this set includes humans above the 
age of about four (without special training), chimpanzees with symbol training 
(Premack, 1983; Thompson et al., 1997), and hooded crows, also with considerable 
training (Smirnova, Zorina, Obozova, & Wasserman, 2015). The fact that success 
with MTS is evident across many species and success with RMTS is sparse calls for 

1 We follow Premack (1983) in restricting the term “relational match-to-sample (RMTS)” to the 
two-item version and refer to matches of four or more identical (or nonidentical) items (e.g., 
Wasserman et al., 2001) as “array match-to-sample.”
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an analysis of what each task requires. The MTS task requires recognizing an object 
match. In contrast, the RMTS task requires encoding the relation between each pair 
of objects and choosing the alternative that shares a relation with the standard. The 
third similarity task Premack discussed is the same-different task. Although making 
a same-different judgment might seem rather like making a match-to-sample, far 
fewer species are able to master the same-different task than can master the match-
to-sample task (Premack, 1983).

Our chief reason for focusing on the same-different relation is the centrality of 
sameness and difference in conceptual thought. Wasserman and Young (2010) quote 
William James as follows: “the recognition and integration of the ‘sense of same-
ness is the very keel and backbone of our thinking’ (p. 459) as well as ‘the most 
important of all the features of our mental structure’ (p. 460).” A second reason for 
choosing the same-different task is that it has been used extensively with nonhuman 
primates, offering the possibility of cross-species comparison. A third, more prag-
matic reason is that it can be tested without language and is therefore feasible for 
use with infant populations. Of course, many researchers in the comparative arena 
have found this option attractive for the same reason; the same-different task has 
been used with a wide variety of species (Fagot & Thompson, 2011; Fagot, 
Wasserman, & Young, 2001; Flemming et al., 2007; Shields, Smith, & Washburn, 
1997; Thompson et al., 1997; Thompson & Oden, 2000; Truppa, Mortari, Garofoli, 
Privitera, & Visalberghi, 2011; Wright & Katz, 2006; Young & Wasserman, 1997, 
2002; Zentall, Singer, & Miller, 2008). There appears to be broad cross-species 
continuity in the ability to carry out same-different judgments on arrays of multiple 
objects (Zentall et al., 2008). For example, pigeons can be trained to successfully 
differentiate between an array of 16 all-identical objects and an array of 16 all-
different objects (Young & Wasserman, 2002). However, other research by this 
group indicates that pigeons could be responding to differences in degree of entropy. 
Studies by Young and Wasserman (1997) varied the degree of sameness within 
arrays of 16 objects and showed that pigeons are highly sensitive to the degree of 
entropy within an array (where entropy is high if all the objects are different and low 
if all are identical). Therefore, if we define relational ability as requiring the ability 
to distinguish same pairs (AA, BB, etc.) from different pairs (AB, CD), then this 
ability is extremely rare in nonhuman species. Nevertheless, human infants can suc-
ceed in the same-different task.

If we focus on the rare nonhuman species capable of making the same-different 
distinction for pairs, we find that extensive training is required for successful perfor-
mance. For example, Wright and Katz (2006) were able to train rhesus monkeys, 
capuchin monkeys, and pigeons to distinguish same pairs from different pairs; how-
ever, to show full transfer to novel pairs, the two species of monkey required over 
4700 training trials, and the pigeons required nearly 14,000 training trials. Flemming 
et al. (2007) showed that rhesus monkeys could learn the same-different task with 
larger arrays and that they could subsequently succeed on the same-different task 
with pairs. In general, apes—notably chimpanzees—have shown greater success in 
learning abstract same-different relations than have monkeys. The RMTS task has 
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proved highly challenging for monkeys (but see Fagot et al., 2001) and is difficult 
even for young children (Christie & Gentner, 2014; Hochmann et  al., 2017). 
However, adult humans readily pass the RMTS task.

Researchers have differed in how to interpret this difference across species. 
Gentner (2003, 2010) and colleagues have proposed that there is a continuum of 
relational ability between humans and primates. They cite work showing that chim-
panzees who have learned symbols (either distinctive tokens or some other differen-
tial response) for same and different can pass the RMTS task—generally considered 
strong test of relational ability (Premack, 1983; Thompson et al., 1997). In contrast, 
Penn, Holyoak, and Povinelli (2008) propose that humans are the only species that 
possesses any relational ability. They discount evidence that chimpanzees can pass 
the RMTS task, arguing that the task can be passed via entropy detection and there-
fore does not indicate the ability to carry out relational matching. In making this 
argument, they are extrapolating from Young and Wasserman’s (1997) demonstra-
tion that pigeons are responding to entropy when matching large arrays of same vs. 
different. However, this argument appears to be incorrect—recent research demon-
strates that while the multi-item array match-to-sample can be passed via entropy 
detection, the classic two-item RMTS task cannot (Hochmann et al., 2017). More 
direct evidence comes from other recent studies that have found that chimpanzees 
(and bonobos) can pass relational tasks (Christie, Gentner, Call, & Haun, 2016; 
Haun & Call, 2009).

A more general point is that tasks that aim to measure sameness—such as MTS, 
same-different discrimination, and RMTS—may call on very different processes 
and knowledge. This is important for understanding what we can infer from these 
tasks. For example, passing the object MTS task does not require forming the rela-
tion of same. We know this because many animals can pass the MTS task but will 
fail to learn a same-different discrimination. All we can infer when an animal (or 
infant) passes the MTS task is that seeing two identical objects feels different from 
seeing two distinct objects2. Likewise, being able to pass the RMTS task does not 
require forming a higher-order relation of sameness between the two SAME rela-
tions. To spell out this analogy:

Matching X with X instead of Y does not imply that the animal has formed a relation of 
SAME (X,X).
Likewise, Matching (X,X) with (A,A) instead of (B,C) does not imply that the animal has 
formed a higher-order relation of SAME {SAME (X,X), SAME (A,A)}.

In any case, it is clear that humans excel in relational ability, even compared to 
our nearest cousins among the great apes. This examination of the comparative lit-
erature reveals two important points for understanding infant relational ability. First, 
focusing on the same-different task, human infants readily learn same-different dis-
crimination. This contrasts with the difficulty many other species experience with 

2 Further, Hochmann et al. (2016) have found evidence suggesting that 14-month-olds in a non-
match to same task pass the “different” task by first finding the match and then choosing the 
other one.
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these relations. Second, infants learn the relation in very few trials (six to nine habit-
uation trials), whereas nonhuman species often require extensive training.

�How Could Structure-Mapping Theory Extend 
Beyond Contexts?

The work that we described in this chapter differs from most work on infant cogni-
tion in that it focuses on the nature of the learning process not the nature of the 
representation. Research on infants’ expectations about how objects behave and 
interact has made enormous progress in the last 30 years and has revealed impres-
sive early capacities in several different arenas, including spatial relations (Casasola, 
2005b; Casasola & Cohen, 2002; Hespos, Grossman, & Saylor, 2010; Hespos & 
Piccin, 2009; Hespos, Saylor, & Grossman, 2009; Hespos & Spelke, 2004; Kibbe & 
Feigenson, 2015; McDonough, Choi, & Mandler, 2003; Moher, Tuerk, & Feigenson, 
2012; Quinn, Cummins, Kase, Martin, & Weissman, 1996) and physical reasoning 
(Baillargeon, 1994; Hespos & Baillargeon, 2001, 2006, 2008; Needham & 
Baillargeon, 1993; Wang & Baillargeon, 2008 for reviews, see Baillargeon, Li, 
Gertner, & Wu, 2011; Baillargeon, Li, Ng, & Yuan, 2009; Spelke, Breinlinger, 
Macomber, & Jacobson, 1992). This work has focused on tracing the early develop-
ment of understanding of spatial and physical events. Thus, the focus of this prior 
research is on revealing the knowledge infants have acquired in the world and how 
that knowledge supports infants’ expectations. In contrast, the focus for this chapter 
is on the learning processes during the experiment itself. We suggest that the 
structure-mapping approach to learning has implications for many other arenas of 
human learning. Here we discuss two such areas: language learning and learning 
about the physical world.

Structure-mapping theory leads to a set of predictions concerning how compari-
son can benefit language learning (Gentner, 2010; Gentner et al., 2007; Gentner & 
Christie, 2010):

•	 Comparing two things engages a structural alignment process that renders their 
commonalties more salient—and this effect is greatest for common relational 
structure (Gentner & Namy, 1999).

•	 Structural alignment also renders alignable differences—differences that play 
the same role in the common relational structure—more salient (Gentner & 
Markman, 2006; Markman & Gentner, 1993; Sagi, Gentner, & Lovett, 2012).

•	 Progressive alignment is beneficial in early learning. Early in learning, when domain 
knowledge is weak, alignment purely on the basis of relations is often impossible. 
In progressive alignment, learners are first given a close overall similarity match that 
instantiates the desired relational structure, as exemplified below.

As Gentner and Namy (2006) reviewed, there is considerable evidence that lan-
guage learning benefits from these processes. Studies of word learning have demon-
strated the power of comparison to reveal common relational structure. For example, 
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Gentner and Namy (1999) taught 4-year-olds a new noun (e.g., “blicket” for a bicy-
cle) and asked them to choose another blicket. Children mostly chose a perceptually 
similar alternative (eyeglasses) instead of a perceptually dissimilar object from the 
same conceptual category (a skateboard). The same result occurred for children 
who were told that “blicket” was a name for a tricycle. But when a third group of 
4-year-olds was shown both the bicycle and the tricycle, told that they were both 
blickets, and asked “can you see why these are both blickets?,” the results were 
strikingly different. Despite the fact that they had twice as much evidence for the 
matching perceptual features, they chose the conceptual match (the skateboard). 
Gentner and Namy (1999) (see also Namy & Gentner, 2002) concluded that struc-
turally aligning the two standards had highlighted their common causal and func-
tional relations. Gentner et al. (2011) found that comparison aided children aged 
3–6 years in learning the meanings of relational nouns—nouns such as container, 
whose meanings are determined not by common features but by common relations.

As Childers (2011) and colleagues have noted, this feature of structural align-
ment—that it preferentially highlights common relational structure—suggests that 
it would be particularly applicable to verb learning (see Imai & Childers, this vol-
ume). Learning verb meanings is challenging to young children. Not only are verbs 
slower to enter the vocabulary than nouns ((Bates et  al., 1994; Bornstein, 2004; 
Gentner, 1982; Gentner & Boroditsky, 2001; Gleitman, Cassidy, Nappa, Papafragou, 
& Trueswell, 2005; Imai, Haryu, & Okada, 2005; MacNamara, 1972), but also even 
when children do learn a new verb, they often initially use it in a highly restrictive 
way (Forbes & Poulin-Dubois, 1997; Huttenlocher, Smiley, & Charney, 1983; 
Tomasello, 1992, 2000). Thus, an important question is how—by what processes—
children acquire and extend new verbs. There is a growing body of research and 
theory that supports the idea that structure-mapping processes are integral to this 
learning (Childers, 2011; Childers, Hirshkowitz, & Benavides, 2014; Childers & 
Paik, 2009; Haryu et al., 2011; Tomasello, 2000). For example, Childers and col-
leagues have shown that children benefit from seeing multiple enactments of a given 
verb, rather than repeated enactments with the same objects (Childers & Paik, 
2009). In another study, Childers, Heard, Ring, Pai, and Sallquist (2012) found that 
2.5-year-olds taught a new verb performed as well after seeing a set of comparable 
enactments as they did after receiving direct instruction about the verb from an 
experimenter.

Other research on language learning has found evidence for a more specific pre-
diction of structural alignment theory: namely, that progressive alignment benefits 
early learning. Progressive alignment is a way of addressing a bottleneck that arises 
in children’s relational learning. Comparing two examples (such as two sentences 
involving the same novel verb) is a route to relational learning, but early in learning, 
children may lack sufficient relational knowledge to be able to align two disparate 
examples. In progressive alignment, learners are first given a close, overall similar-
ity match that instantiates the desired relational structure. The high overall similar-
ity makes it likely that children will spontaneously compare the two examples, and 
because the object matches are consistent with the relational alignment, young 
learners are likely to arrive at the correct alignment. Thus, progressive alignment 
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can serve as “training wheels” for purely relational matches (Gentner, 2010; Gentner 
& Medina, 1998).

Childers et al. (2016) asked whether progressive alignment could aid children’s 
verb learning. Indeed, the study found evidence that 3.5-year-old children benefit 
from progressive alignment. They presented children with two novel verbs under 
three conditions. In one condition, each verb was enacted four times with the same 
objects. In the progressive alignment condition, each verb was enacted first with 
highly similar objects playing similar roles in the events, followed by two events in 
which the objects were highly dissimilar across the enactments of the verb. In the 
all-far condition, each verb was enacted four times, with all enactments having 
highly dissimilar objects. After children witnessed these enactments, they were 
asked to enact the verb themselves, first using new objects similar to the ones used 
in the learning trials and one (the “far extension”) using dissimilar objects. There 
were two results of note. First, children seeing multiple enactments of the same verb 
produced more correct extensions on the test than would children seeing a single 
enactment, consistent with prior findings (e.g., Childers, 2011; Childers & Paik, 
2009). Second, on the critical far test, children who received progressive alignment 
from highly similar to less similar enactments performed best—significantly better 
than the single-enactment group.

Another study of progressive alignment in verb learning was done by Haryu 
et al. (2011). They taught 4-year-old children a verb for a novel event and asked 
whether the children could extend the verb to other events. They found that children 
were initially limited to close overall matches (i.e., literally similar events). That is, 
they extended the verb only when the new event shared similar objects as well as 
depicting the same action as the initial event; they failed when the objects were dis-
similar, even when the new event shared its action with the initial event. In a second 
study, Haryu et  al. found that progressive alignment from close to far matches 
enabled a new group of 4-year-olds to extend the verb based on sameness of action, 
without support from object similarity. Similarly Gentner et al. (2007) used high 
object similarity to help children to make the correct correspondences, thus support-
ing the correct alignment of relational structure. As in other work with progressive 
alignment, structural alignment resulted in heightening the common structure, 
which the children could then extend to an event that shared only that structure.

These findings are consistent with the general position that initial representations of 
verbs may be quite concrete and tied to the context in which they are learned (Lieven, 
Pine, & Baldwin, 1997; Tomasello, 1992, 2000) and that comparisons between current 
and stored utterances lead to more general, abstract representations of verb meaning. 
Initially, those comparisons will be between overall similar utterances, in which verbs 
appear in very similar frames. But via progressive alignment, these early concrete 
matches will potentiate future more abstract matches (Childers & Paik, 2009; Childers 
& Tomasello, 2001; Pruden, Shallcross, Hirsh-Pasek, & Golinkoff, 2008; see Gentner 
& Namy, 2006, for a more extensive discussion).

Structure mapping also has application to studies of artificial grammar learn-
ing—another arena in which infant researchers have investigated learning during 
the course of the experiment. Many artificial grammar tasks can be viewed as rela-
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tional learning tasks (Aslin & Newport, 2012; Gerken, 2006; Gomez & Gerken, 
2000; Johnson et  al., 2009; Kuehne, Gentner, & Forbus, 2000; Marcus, Vijayan, 
Rao, & Vishton, 1999; Saffran, Pollak, Seibel, & Shkolnik, 2007). For example, in 
Marcus et al.’s (1999) study, after 7.5-month-olds heard 48 examples (16 patterns, 
three times each) of a syllable pattern such as AAB, they could then discriminate 
new instances of the AAB pattern from instances of an ABA pattern, even when all 
the specific syllables were new (see also Gomez & Gerken, 1999). Further, there is 
evidence that the ability to generalize across such patterns may operate across a 
broad range of stimuli, including tones and visual stimuli (Gomez & Gerken, 2000; 
Johnson et al., 2009; Saffran et al., 2007).

We suggest that structure mapping provides a natural mechanism for this pro-
cess. Two key points supporting this claim are (1) by 7 months (and even earlier) 
infants are capable of structural alignment and abstraction and (2) our simulations 
reveal that the structural alignment process can capture key phenomena in artificial 
grammar learning. To take the first point, our studies of same-different learning 
show that infants can form a relational abstraction over a series of examples. More 
specifically, this process shows signatures of structural alignment and mapping, as 
discussed earlier.

Support for the second point—that the same process of structural alignment and 
abstraction can account for infants’ artificial grammar learning—comes from simu-
lation studies. Kuehne et al. (2000) showed that a computational model of analogi-
cal generalization called the sequential learning engine (SEQL) can capture the 
Marcus et al. (1999) findings. SEQL and its successor, SAGE,3 use the structure-
mapping engine (SME; Falkenhainer, Forbus, & Gentner, 1989; Forbus et al., 2017) 
to iteratively compare input examples, creating an ongoing generalization. If SAGE 
(or SEQL) is given an input example, it will store that example. If the example is 
followed by another, SAGE compares it to the first one, using SME. If there is suf-
ficient overlap (i.e., if SME’s score is above a preset threshold), the common struc-
ture is stored as a generalization. If the overlap is below threshold, the example will 
be stored separately. This process continues as new examples arrive; if new exam-
ples are sufficiently similar to the ongoing generalization, they are assimilated into 
it and the generalization is updated. New examples that cannot be assimilated into 
the main abstraction are compared to the set of examples; if a new example is very 
similar to a stored example, a new generalization is formed from their common 
structure. Thus, it naturally results in a generalization (or sometimes more than one 
generalization) plus exceptions.

SEQL was given the same input as the infants in Marcus et al.: three repetitions of 
each of the 16 three-syllable strings, for a total of 48 strings. Each syllable was 
encoded as having 12 phonemic features (following Elman, 1998). The relational pat-
tern within each string (e.g., AAB) was encoded by Magi, which uses SME to encode 
symmetry and repetition within an item (Ferguson, 1994). As the strings were 

3 SAGE (McLure, Friedman, & Forbus, 2015) operates using the same basic iterative comparison 
process as SEQL but keeps track of frequency information about alignable structures, enabling it 
to produce probabilistic generalizations.
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presented, SEQL computed a generalization by comparing the first two exemplars 
(via SME) and storing their common structure and then incrementally comparing 
subsequent exemplars to the ongoing abstraction. After all 48 exemplars were pre-
sented, SEQL was given two test strings with new syllables. Like the infants in Marcus 
et al., SEQL found the test string with the same relational structure (e.g., CCD) more 
similar to its generalization than the one with different structure (e.g., CDC).

Structure mapping has application to studies on physical reasoning too. For 
example, in a series of six experiments, Wang and Baillargeon (2008) describe 
teaching trials that helped and hindered infants’ learn the variable of height in cov-
ering events 1 month earlier than usual. The authors describe their findings in the 
context of their explanation-based learning theory. However, understanding these 
studies in the context of relational learning illustrates the broad context in which 
this ability operates. Successful learning was demonstrated in Experiments 1 and 2 
that allowed infants to compare the height of the object to the height of multiple tall 
and short covers. In a third experiment, they replicated the effect of learning after 
three comparison trials even when the test was delayed by 24 hours. Learning was 
hindered in low-alignment conditions. In Experiment 4, infants failed to learn when 
they could not compare between an object being fully and partially hidden. In 
Experiment 5, infants failed to learn when there was no direct comparison between 
the relative heights of the covers and the object. Given the key roles of visual align-
ment and comparison across these experiments, structure-mapping theory predicts 
the same pattern of results.

�Conclusions

We began this chapter highlighting the amazing ability humans have for deriving 
relational abstractions. Like many other animals, we can learn by association and by 
perceptual generalization. However, unlike most other species, we also acquire new 
information by means of relational generalization and transfer. In this chapter, we 
explore the origins of a uniquely developed human capacity—our ability to learn 
relational abstractions through analogical comparison. We focus on whether and 
how infants can use analogical comparison to derive relational abstractions from 
examples. We frame our work in terms of structure-mapping theory, which has been 
fruitfully applied to analogical processing in children and adults. We find that young 
infants show two key signatures of structure mapping: first, relational abstraction is 
fostered by comparing alignable examples, and second, relational abstraction is 
hampered by the presence of highly salient objects. The studies we review make it 
clear that structure-mapping processes are evident in the first months of life, prior to 
much influence of language and culture. This finding suggests that infants are born 
with analogical processing mechanisms that allow them to learn relations through 
comparing examples.

Turning to very early learning, we augmented our account by considering the 
nature of young infants’ encoding processes, leading to two counterintuitive predic-
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tions. First, we predicted that young infants (2–3 months old) would be better able 
to form a relational abstraction when given two alternating exemplars than when 
given six different exemplars. This is based on the assumption that young infants 
may initially focus on the individual objects and shift to noticing the relation 
between them after repetition of the exemplar (Casasola, 2005a). As predicted, this 
pattern was found for young but not older infants. Second, we predicted that 
younger, but not older, infants would be able to form a relational abstraction from 
one repeated exemplar; the prediction follows from the assumption that young 
infants have unstable encoding processes.

Next, we revisited Premack’s insight from 1983 that the tasks used to measure 
analogical abilities (RMTS, MTS, and same/different discrimination) are vastly dif-
ferent from each other. The takeaway from this section is that while many species 
can learn through association and perceptual generalizations, there are relatively 
few species that can succeed in the same/different discrimination task. Of the spe-
cies that can succeed in the same/different task, humans are unique in that they need 
fewer than 10 trials to learn such relations. In the final sections, we reviewed how 
structure mapping extends to language acquisition, artificial grammar learning, and 
physical reasoning. The value of investigating the origins of our analogical abilities 
is that we will be in a better position to understand how language and culture capi-
talize on cognitive abilities. More broadly, we can address whether essential differ-
ences between humans and other species are evident from the earliest points in 
development.
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Chapter 6
The Emergence of Inductive Reasoning 
During Infancy: Learning from Single 
and Multiple Exemplars

Susan A. Graham, Michelle S. Zepeda, and Ena Vukatana

Abstract  In this chapter, we describe the emergence of category-based inductive 
reasoning during the infancy and preschool years, with focus on the adherence to a 
fundamental induction principle, premise-conclusion similarity. We review evi-
dence demonstrating that 13- to 22-month-old infants and preschoolers use both 
category information and perceptual similarity to guide their inductive inferences 
about nonobvious properties under various conditions. Next, we describe recent 
studies from our lab focusing on 9- and 11-month-olds’ tendency to associate prop-
erties with familiar and unfamiliar animal categories. These studies highlight the 
following: (1) infants as young as 9 months can link sound properties with animal 
categories and (2) the tendency to map properties to categories varies by the type of 
category (familiar vs. unfamiliar animals) and whether infants are familiarized with 
a single category member or multiple category members.

Inductive reasoning is a central aspect of human cognition, allowing individuals to 
generalize from the known to new instances and situations. Consider the following 
situation: a young child sees a brown four-legged animal walking toward them. If 
the child recognizes this animal belongs to the category dog, they can generate pre-
dictions about this particular animal and its characteristics and behaviors. That is, 
drawing upon their previous knowledge about dogs, the child might expect this 
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animal to be friendly, to bark, and to chase balls. In contrast, if the child identifies 
the animal as belonging to the category bear, their inferences about the animal and 
its characteristics and behaviors would likely be quite different! This example illus-
trates a type of induction that is pervasive in our everyday reasoning, namely, 
category-based inductive reasoning. Put simply, category-based inductive reason-
ing involves invoking the premise that properties of a category will likely hold true 
for other members of the same category. As the example also illustrates, category-
based inductive reasoning allows individuals to move beyond representing specific 
entities (i.e., this particular dog or bear) to reasoning about these entities as instances 
of categories (e.g., dogs, bears), resulting in increased cognitive efficiency and the 
opportunity to benefit from past experiences.

In this chapter, we review research on the emergence of category-based inductive 
reasoning during early childhood. We begin with a discussion of preschoolers’ 
inductive abilities to set the stage but then focus more on infancy and the develop-
mental origins of inductive reasoning during the first year of life. In keeping with 
the overall theme of this volume, we weave through the chapter discussion of the 
role of multiple examples in inductive reasoning.

�Inductive Reasoning During Early Childhood

Much is known about the developmental emergence of category-based inductive 
reasoning during the preschool and early childhood years (see Gelman, 2003; 
Hayes, 2007; Hayes & Heit, 2013; Kalish & Thevenow-Harrison, 2014, for reviews). 
To assess inductive generalizations in preschoolers, preschoolers are typically tested 
using a variant of the following paradigm: they are presented with a target object or 
objects (e.g., a bird) and learn about a nonobvious property of that object (e.g., 
“lives in a nest”). They are then asked whether that property extends to test objects 
that vary in some way from the target object. The resulting generalization patterns 
provide insight into the nature of children’s categorical representations as well as 
the factors that influence their inferential decisions.

Seminal research has demonstrated that preschoolers have sophisticated induc-
tive reasoning skills (e.g., Davidson & Gelman, 1990; Diesendruck & Peretz, 2013; 
Gelman, 1988; Gelman & Coley, 1990; Gelman & Davidson, 2013; Gelman & 
Markman, 1986; Gelman & O’Reilly, 1988; Rhodes & Gelman, 2008). They read-
ily engage in category-based reasoning after exposure to only one exemplar of a 
given category and will flexibly adjust their property extensions as a function of the 
type of information provided. That is, in the absence of other cues to category mem-
bership, 2- to 5-year-olds will generalize properties to objects that are highly per-
ceptually similar (e.g., Gelman & Coley, 1990; Graham, Booth, & Waxman, 2012; 
Noles & Gelman, 2012; Sloutsky & Fisher, 2004; Sloutsky, Kloos, & Fisher, 2007). 
When categorical information is provided in the form of shared category labels, 
however, preschoolers will overlook perceptual similarity and use the shared label 
information to guide their inferences (e.g., Booth, 2014; Gelman & Coley, 1990; 
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Gelman & Markman, 1987; Jaswal, 2004; Jaswal & Markman, 2002; Sweller & 
Hayes, 2014). For example, when target and test objects are labeled with the same 
count noun (a conventional marker of category membership; e.g., bird), children as 
young as 2½ years of age generalize properties from the target to new category 
members, even when those members differ in perceptual similarity from the target 
object (Gelman & Coley, 1990; Gelman & Davidson, 2013). Importantly, pre-
schoolers recognize that not all labels signal shared category membership and 
default to reasoning on the basis of perceptual similarity when making their infer-
ences in such cases (Gelman & Coley, 1990; Graham et al., 2012). For example, 
when target and test objects preschoolers are marked with adjectives (e.g., is sleepy), 
rather than count noun labels, 2.5-year-olds ignore these shared labels and revert to 
reasoning on the basis of shared perceptual similarity.

Not only will preschoolers overlook perceptual similarity when other category 
information is available, but they will also modulate their inferences based on fac-
tors such property generalizability, category homogeneity, and previous knowledge 
about a particular category (Gelman, 1988). For example, preschoolers recognize 
that some properties should be generalized, while others should not; and do not 
generalize those properties that are arbitrary (e.g., “fell on the floor this morning”) 
or that reference transient properties (e.g., “hungry”; Brandone, 2017; Gelman, 
1988; Graham, Cameron, & Welder, 2005; Graham, Welder, & McCrimmon, 2003; 
Waxman, Lynch, Casey, & Baer, 1997). Furthermore, preschoolers attend to cate-
gory homogeneity, in that they prefer to generalize properties from a target to more 
homogeneous categories than to more heterogeneous categories (e.g., they are more 
likely to make property inferences from bears to mammals than to the more general 
category of animals; e.g., Brandone, 2017; Gelman, 1988; Lawson & Kalish, 2006). 
Finally, entities that are more typical or representative of a category are more likely 
to promote inductive inferences on the part of preschoolers (e.g., López, Gelman, 
Gutheil, & Smith, 1992; Rhodes, Brickman, & Gelman, 2008).

In summary, the literature reviewed briefly here suggests that many fundamental 
inductive phenomena are in place by early childhood (see Hayes, 2007, for a more 
detailed review). This does not imply, however, that inductive reasoning does not 
continue to develop over the childhood years. Consider, for example, the influence 
of evidence diversity on inductive generalizations. Adults tend to generalize more 
broadly from diverse samples (e.g., dogs and whales) than from less diverse sample 
(e.g., dogs and wolves; Feeney & Heit, 2011; Osherson, Wilkie, Smith, & Lopez, 
1990). Although children as young as 5 years of age show evidence of attending to 
the diversity of the sample when reasoning about the properties of unfamiliar cate-
gories, they do not do so when reasoning about familiar natural kinds (Rhodes & 
Liebenson, 2015). In a similar vein, attention to sample size in inductive reasoning 
emerges by 3 years of age but only when there is a significant disparity in the sam-
ple sizes presented and items in a set are presented sequentially and not when pre-
sented simultaneously (Lawson, 2014). As these two examples illustrate, there is 
both stability in fundamental inductive processes from early childhood to adult-
hood and developmental changes that modulate when and how these processes are 
engaged.
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�Inductive Reasoning in Infancy

Given preschoolers’ well-developed inductive reasoning skills, researchers have 
sought to characterize the emergence of inductive reasoning capacities during the 
infancy period. Due to infants’ limited language abilities, inductive inference tasks 
relying on verbal responses are not feasible. Thus, researchers have drawn upon 
paradigms which capitalize on infants’ tendency to imitate another’s actions. 
Seminal research, using imitation paradigms, suggests that both perceptual similar-
ity and category knowledge guide infants’ inductive generalizations (e.g., Baldwin, 
Markman, & Melartin, 1993; Mandler & McDonough, 1996, 1998). For example, 
Baldwin et al. (1993) presented 9- to 16-month-olds with unfamiliar target objects 
that possessed a nonobvious property (e.g., a horn that honked when squeezed), 
demonstrated the action that elicited the property, and observed whether infants 
would perform the same action on test objects of varying degrees of similarity. Even 
after this brief exposure to the object, infants extended properties on the basis of 
perceptual features, performing the target action on those objects that were highly 
similar to the target object. Although no significant age effects were observed, 
Baldwin et al. noted that inductive inferences were more clearly exhibited by infants 
11 months of age and older.

Building on this foundational work, we have conducted a number of studies 
examining infants’ reasoning about the nonobvious properties of unfamiliar kinds, 
focusing on infants between the ages of 13 and 22 months. In our research, we have 
used a variant of the imitation paradigm (based on that of Baldwin et al., 1993; see 
Fig. 6.1). In this paradigm, infants are presented with unfamiliar target objects that 
possess a nonobvious sound property that is elicited by a particular action (e.g., 
rings when tapped on the top) across a series of trials. On each trial, the experi-
menter introduces the target object and demonstrates how the property can be 
evoked. Infants are then given the opportunity to explore the target object and elicit 
the property. The experimenter then presents the infant with a test object – depend-
ing on the particular trial, that test object may be highly perceptually similar to the 
target object (i.e., the high similarity object) or may be perceptually dissimilar in 
appearance (i.e., the low similarity object), and the infant is allowed to interact with 
that test object.

Within each object type (high or low similarity), infants are presented with trials 
in three within-subject conditions: the violated-expectation condition, the baseline 
condition, and the predicted condition. The condition of greatest interest is the 
violated-expectation condition; here, the target object possesses the nonobvious 
sound property, but the test objects do not. If infants judge the test object to belong 
to the same category as the target object, they will repeatedly attempt to elicit the 
nonobvious sound property on the disabled test object. In other words, infants’ per-
formance of actions on the test objects in condition provides evidence of inductive 
reasoning (i.e., they expect the test objects to possess the same nonobvious property 
as the target object) (Baldwin et al., 1993; Welder & Graham, 2001).

The baseline condition, in which the target and test object’s nonobvious proper-
ties are disabled, acts as a control condition, providing a baseline measure of infants’ 
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exploratory actions. Comparing infants’ performance of actions in the baseline con-
dition to that of the violated-expectation condition indicates whether the property of 
the target object is indeed nonobvious. That is, if infants attempt to elicit the prop-
erty from the test objects in the violated-expectation condition, but not the baseline 
condition, this provides evidence that the objects do not suggest the target action 
through their appearances alone. Results from the experiments described below 
confirm this prediction; infants perform few, if any, actions on the objects in the 
baseline condition.

The predicted condition, in which the target and test object both possess the 
nonobvious property, also acts as a control condition to ensure that infants do not 
develop the expectation that all test objects are disabled. We typically do not ana-
lyze infants’ actions in this condition as it is difficult to judge which actions are due 
to the infants’ expectations about shared properties and which actions are due to the 
reinforcing nature of the sound property itself (see Welder & Graham, 2001, for a 
more detailed discussion of these control conditions).

Across several studies using this imitation paradigm (e.g., Graham & Kilbreath, 
2007; Keates & Graham, 2008; Switzer & Graham, 2017; Welder & Graham, 2001), 
we have focused on whether infants as young as 13 months of age, like adults and 
preschoolers, adhere to the fundamental induction principle of premise-conclusion 
similarity (Hayes, Heit, & Swendsen, 2010; Osherson et al., 1990). As noted earlier, 
according to this principle, the likelihood of generalizing from a premise or target 
category to a conclusion category varies as a function of the perceived similarity 

Fig. 6.1  Overview of imitation paradigm
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between the two. We focused our investigations on this principle as it has been iden-
tified as one of the “touchstone” phenomena in inductive reasoning, depending 
more on computations of similarity and less on background knowledge (Hayes & 
Heit, 2018). Given the young age of our participants, we reasoned that this principle 
may be the first to emerge in development. Across a series of studies examining this 
phenomenon, we have explicated the types of similarity infants will rely upon to 
guide their category-based inductive inferences, with particular focus on the role of 
shape similarity and category labels, as we review below. Note in the results reported 
below, we focus on findings from the violated-expectation condition, as this condi-
tion provides evidence of infants’ inductive reasoning, as described above.

Shape similarity  In a number of studies, we have documented that infants between 
13 and 22 months of age rely on shape similarity across exemplars to guide their 
inductive inferences, in the absence of other information about object category 
(Graham, Keates, Vukatana, & Khu, 2013; Graham, Kilbreath, & Welder, 2004; 
Welder & Graham, 2001). That is, infants will privilege object shape over other 
types of perceptual properties (i.e., color) when engaging in inductive reasoning, 
assuming that similarly shaped objects share nonobvious properties. These results 
indicate that shape is taken as a reliable perceptual cue to the category membership 
of objects early in development, even prior to having acquired substantial vocabu-
lary (Graham & Diesendruck, 2010; but see Colunga & Smith, 2008, for an alterna-
tive interpretation of the role of shape in early categories).

Why is shape privileged over other perceptual features in inductive reasoning 
tasks? First, shape (or form similarity) is easily and quickly perceived, even by the 
developing visual system (e.g., Quinn & Bhatt, 2015). Second, shape is often, but 
not perfectly, correlated with object category (i.e., bird-shaped things are often 
birds) and tends to not vary across category members to the same degree as other 
perceptual properties such as size and color (e.g., different-colored dogs and 
different-sized dogs). Third, infants’ tendency to privilege shape similarity over 
color and texture similarity aligns with research demonstrating that shape is central 
to object segregation, object individuation, and object construals. Around 4 months 
of age, infants are more likely to use shape differences (vs. color or pattern differ-
ences) between objects to discover object boundaries (Needham, 1999) and to indi-
viduate objects (e.g., Wilcox, 1999). Around 9 months of age, infants use shape to 
recognize objects in occlusion events (e.g., Káldy & Leslie, 2003; Tremoulet, 
Leslie, & Hall, 2000; Xu, Carey, & Quint, 2004). This early-emerging primacy of 
shape may assist infants in later categorization and inductive reasoning tasks by 
directing their attention to shape, over other perceptual properties, when searching 
for commonalities across exemplars.

Category labels  Naming objects with shared count nouns plays a critical role in 
infants’ inductive reasoning, helping infants to unite objects into categories and 
guiding their inferences about the shared properties of category members (e.g., 
Graham et al., 2004; Graham & Kilbreath, 2007; Keates & Graham, 2008; Welder & 
Graham, 2001). That is, when the target and test objects are labeled with the same 
count noun, infants will reason that even dissimilar-shaped objects share a nonobvi-
ous property (see Chap. 11 for discussion of how relational labels can promote com-
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parisons). Furthermore, by 16 months, infants have a refined understanding of nouns 
as category labels – only labels that are presented referentially (i.e., by a person vs. 
by a tape recorder), embedded within an intentional naming phrase (vs. presented 
alone), and marked as count nouns (e.g., “Look at this blick.” vs. marked as adjec-
tives “Look. This is blickish.”) guide infants’ inferences about nonobvious proper-
ties (Keates & Graham, 2008).

More recently, we have focused on another role of nouns, that is, the use of 
nouns to sort highly similar objects into distinct categories. Consider, for example, 
a situation in which an infant sees both a blackbird and a bat. Both animals have 
similar shapes and sizes, both have wings, and both can fly – how do infants deter-
mine that these two animals belong to two different categories? One means by 
which accurate category membership is arrived at in cases like this is through cat-
egory labels (i.e., providing different category labels). In two studies, we have 
shown that the ability to use distinct labels to carve out two different categories 
emerges between 14 and 16 months of age (Graham et al., 2013; Switzer & Graham, 
2017; see Chap. 7 for discussion of how learning different verbs leads to a differen-
tiation of verb meanings). That is, when target and test objects were labeled with 
different count nouns (e.g., “This is a blick. This is a wug.”), 14- to 16-month-olds 
were significantly less likely to generalize the nonobvious property to the high-
similarity test object in the violated-expectation condition, suggesting that they 
appreciated that the objects belonged to distinct categories and did not share non-
obvious properties.

Together, these studies demonstrate infants’ reliance on shared category labels to 
guide their inferences which reflects the expectation that count noun labels signal 
shared category membership and shared category membership promotes inductive 
inferences. Furthermore, when considered in conjunction with studies with pre-
schoolers (e.g., Noles, 2019; Noles & Gelman, 2012), these results challenge 
accounts that children’s reliance on shared names to license their inferences are 
solely the result of attentional or associative mechanisms (e.g., Sloutsky & Fisher, 
2004). For example, if infants were relying only on an associative process, then they 
would have formed a unit that included the object category, label, and nonobvious 
property and used that unit to generalize to new category members. This unit pre-
sumably would include any type of label, be it a count noun, adjective, or isolated 
word (i.e., a word not presented in a naming phrase). Instead, our results indicate 
that infants only used the label when it was embedded in a naming phrase, marked 
as a count noun, and presented by the experimenter.

From pictures to objects  We also have examined whether infants can draw infer-
ences from symbolic artifacts, namely pictures, and generalize properties to real-
world objects. The ability to draw inferences from symbolic artifacts allows infants 
to learn about objects without directly interacting with those objects. Our findings 
demonstrated that infants form expectations about nonobvious properties of objects 
after being exposed to a picture book that depicted the property of the object. That is, 
13-, 15-, and 18-month-olds were read a picture book showing an adult evoking a 
nonobvious property of an unfamiliar object and then presented with the real-world 
objects depicted in the book. Infants in all three age groups imitated the actions of the 
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depicted adult on the real-world objects, indicating that they expected the real-world 
objects to have same property as depicted in the book (Keates, Graham, & Ganea, 
2014). This ability to transfer nonobvious properties from pictures to their real refer-
ents is present as early as 13 months of age and continues to be refined during the late 
infancy and preschool years (Keates et al., 2014; Khu, Graham, & Ganea, 2014).

Summary  Together, this research highlights the flexible nature of infants’ induc-
tive reasoning strategies during the second year of life, demonstrating that infants 
will readily generalize properties to form a target object to category members based 
on both shape similarity and shared count noun labels. Moreover, infants have a 
refined understanding of the role of count nouns in inductive reasoning. That is, they 
appreciate that shared count nouns, but not shared adjectives, shared isolated word 
forms (e.g., “blick,” or distinct nouns), license inductive inferences. Finally, infants 
can form expectations about shared object properties even when the objects are 
presented within different symbolic modalities, reasoning that real-world objects 
share the same properties as objects depicted in picture books.

Reasoning from single exemplars  Infants’ inductive reasoning abilities are even 
more remarkable when one considers that they are reasoning based upon exposure 
to a single exemplar of an unfamiliar category. That is, in all our experiments and in 
that of Baldwin et al. (1993), infants infer that two unfamiliar objects share the same 
nonobvious property after seeing the experimenter evoke the property on a single 
target object (in contrast, see Chap. 7 for a verb study showing difficulty at test 
when seeing only a single event). This indicates that infants between 13 and 
22 months have robust inductive reasoning abilities and, like preschoolers, will gen-
eralize properties from one object to another after minimal experience with these 
unfamiliar object categories. Infants’ ready willingness to generalize properties to 
other members of the same category following minimal exposure signals consider-
able developmental continuity in adherence to premise-conclusion similarity and 
raises the intriguing possibility that early in development, children assume, as a 
default, that properties can be generalized to other category members.

In considering these findings, we also note that the imitation task used provides 
a supportive context to explore infants’ inferences. That is, infants are presented 
with relatively simple, yet engaging, objects in a highly interactive task that pro-
vides infants with support to identify the critical features of the objects and link the 
properties with the categories. During the demonstration phase, the experimenter 
engages the infant, directing them toward the objects using rich intentional cues. In 
interacting with the target exemplar themselves, infants gain direct experience in 
evoking the property from the object, and our observations of the infants in our stud-
ies suggest that they find producing the sound properties highly reinforcing. Perhaps 
more importantly, the target object remains in view during the test trials, thereby 
allowing infants to directly compare the given test object to the target object and 
assess the relation between the target and test objects. Thus, in the context of this 
highly interactive imitation task, infants between 13 and 22 months require only 
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minimal support to generalize properties, findings that stand somewhat in contrast 
to the more fragile abilities of infants under the age of 12 months that we will review 
in the next section.

�Developmental Origins of Inductive Reasoning

Given the remarkable developmental continuity in category-based inductive reason-
ing between the preschool and late infancy years, the question of when, and how, 
this ability emerges in development arises. One early study provides some evidence 
that inductive reasoning skills emerge during the first year of life (McDonough & 
Mandler, 1998). Using an imitation paradigm, McDonough and Mandler (1998) 
demonstrated that 9- and 11-month-olds generalized the properties of animals and 
vehicles to within-category members (e.g., infants extended the property of drink-
ing to members of the animal category, such as a cat and a bird). Beyond this study 
(and that of Baldwin et al., 1993, who included infants ranging in age from 9 to 
16 months), however, comparatively little is known about the emergence of induc-
tive reasoning in infants younger than 12 months. Clearly, though, the ability to 
engage in even a rudimentary form of inductive reasoning would assist young 
infants in organizing the new information they encounter during their first year and 
help them make effective predictions about the properties of new entities.

In recent research, we have begun to address this developmental gap by examin-
ing a fundamental precursor of inductive reasoning – namely, the ability to create 
associations between categories and their respective properties. That is, we have 
examined infants’ tendency to link object properties with object categories  – an 
ability which precedes the inductive reasoning abilities observed in later develop-
mental periods. This ability to link properties with categories, rather than individu-
als, can allow for the extension of properties to new members of a category. Note 
that we distinguish this process from inductive reasoning per se as the paradigm we 
use does not allow us to distinguish whether infants’ generalizations of object prop-
erties reflect primarily associative processes (see Chaps. 2 and 4 for discussion of 
infant statistical learning) or whether they support a more sophisticated understand-
ing of object categories on the part of the infant. In this line of research, we have 
sought to gain new insights into how infants begin to organize the new information 
they encounter during their first year and to understand the conditions that enable 
infants to make effective predictions about the properties of new entities that they 
may encounter.

In our studies, we have used a looking time paradigm rather than an imitation 
paradigm to allow us to examine a broader age range during early infancy (Baldwin 
et al., 1993; Welder & Graham, 2001). Relative to imitation paradigms, looking time 
paradigms place fewer demands on infants’ motor and cognitive skills (i.e., by using 
infants’ looking time as the primary outcome rather than motor skills). An overview 
of paradigm is illustrated in Fig. 6.2. In this paradigm, infants are presented with 
dynamic videos of two animals each paired with a novel distinctive sound across a 

6  The Emergence of Inductive Reasoning During Infancy: Learning from Single…



schrist3@swarthmore.edu

114

series of familiarization trials, followed by test trials. As research has demonstrated 
that synchronous presentation of the movement of an object and a sound helps 
infants learn arbitrary relations between visual and auditory stimuli (e.g., Bahrick, 
Hernandez-Reif, & Flom, 2005; Gogate & Bahrick, 1998; Slater, Quinn, Brown, & 
Hayes, 1999), the onset of the sound is contingent upon the animal’s mouth move-
ment (i.e., the sound and mouth movement are synchronous). This synchrony also 
highlights for infants that the sound is an intrinsic property of the animal.

During the familiarization phase, infants are presented with an exemplar from 
each animal category (e.g., Animal A [blue] – Sound 1 – and Animal B [pink] – 
Sound 2) across a series of trials. On each trial, infants are presented with one 
exemplar from one of the two unfamiliar animal categories. The trial begins with an 
animal in profile, then turning its head to face the front toward the infant, with no 
sound. Next, the animal, with its head continuing to face toward the infant, opens its 
mouth and produces a sound, alternating between sound and silence at 1-second 
intervals. Then a new trial begins. The order of presentation of the two animal exem-
plars is randomized across this phase.

Trial Type Familiarization Condition
Single Exemplar Multiple Exemplar 

Pre-test

Familiarization

Animal A –Sound 1

Animal B – Sound 2

Animal A - Sound 1

Animal B – Sound 2

Test
Same

Sound 1 Sound 1
Test
Extension

Sound 2 Sound 2
Post-test

Fig. 6.2  Overview of looking time paradigm

S. A. Graham et al.



schrist3@swarthmore.edu

115

Following familiarization, we test infants’ learning and extension of the proper-
ties: To evaluate the acquisition of the animal-sound mappings, infants are presented 
with side-by-side presentation of the two animals observed during familiarization, 
accompanied by one of the characteristic sounds (same trials). Extension trials 
assess infants’ ability to extend the sound property to new category members that 
vary in similarity to the originally presented animals. Following from other research 
using preferential looking testing paradigms (e.g., Yoshida, Fennell, Swingley, & 
Werker, 2009), if infants learned the original animal-sound association, they will 
look toward the animal that matched the sound (i.e., the target animal) at rates 
greater than chance during the same trials. If infants generalized the sound property 
to new category members, their looking to the target animal will be significantly 
greater than chance on extension trials. Looking times in the pre- and posttest trials 
are compared to ensure infants maintain attention across the duration of the 
experiment.

Using this paradigm, we have made significant progress in documenting the 
early emergence of the foundations of inductive reasoning during the first year of 
life. That is, we have shown that 9- and 11-month-olds will learn and generalize the 
properties of both unfamiliar and familiar categories (Vukatana, Graham, Curtin, & 
Zepeda, 2015; Vukatana, Zepeda, Anderson, Curtin, & Graham, 2019). This ability 
to generalize properties, however, is modulated by a number of interacting factors, 
including the familiarity of the category, whether single or multiple exemplars of 
each category are presented during familiarization, and infants’ age. We first review 
findings from this series of studies, highlighting the conditions under which 9- and 
11-month-old infants learn and generalize object properties. We organize this dis-
cussion by contrasting our findings from unfamiliar versus familiar categories, fol-
lowed by a broader discussion of when infants learn from single exemplars versus 
multiple exemplars.

�Unfamiliar Animal Categories

In our first examination of infants’ category-property links, we focused our investi-
gations on whether infants would associate properties with unfamiliar “basic-level” 
animal categories and then extend those properties to new members of the catego-
ries (Vukatana et al., 2015; Zepeda & Graham, 2019). For these experiments, we 
developed novel animal categories that resembled basic-level categories (see 
Fig. 6.2). That is, following from the key attributes of basic-level categories noted 
by Rosch, Mervis, Gray, Johnson, and Boyes-Braem (1976), members of our unfa-
miliar animal categories shared salient features (i.e., texture, size, parts, shape) and 
were clearly discriminable (differed from one another in color). We focused on 
unfamiliar animal categories to provide insight into infants’ ability to link properties 
with categories “online,” following from our earlier research demonstrating that 
older infants can quickly make these links. That is, we used unfamiliar categories to 
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ensure infants did not have any preexisting knowledge about the objects themselves 
that would influence their category-property mappings. Furthermore, we focused on 
“basic-like” categories, as previous research had only examined 9- and 11-month-
olds’ generalizations of the shared properties of familiar global categories 
(McDonough & Mandler, 1998; Pauen, 2002). In these studies, we first examined 
how the number of familiarization exemplars presented influenced whether infants 
will learn a novel animal-novel sound pairing and extend that sound property to new 
exemplars of a familiarized category, followed by consideration of whether provid-
ing category training would assist infants in learning from a single exemplar.

In our first set of experiments, we varied whether 11-month-olds were tested in 
one of two familiarization conditions: (a) single exemplar of each animal category 
or (b) multiple exemplars of each category (Vukatana et al., 2015). In the single 
exemplar condition, infants were presented with one exemplar of each of two ani-
mal categories (e.g., Animal A [blue] – Sound 1; Animal B [pink] – Sound 2) during 
familiarization. In the multiple exemplar condition, infants were familiarized with 
three different-colored exemplars from each animal category, with the members of 
the same category always producing the same sound. Infants in both conditions 
were then tested with same and extension trials, as outlined in the overview of our 
looking time paradigm in Fig. 6.2.

Infants’ performance differed as a function of familiarization condition. That is, 
11-month-old infants in the single exemplar condition did not show evidence of 
either (a) learning the original animal-sound mapping or (b) extending the sound 
property to a new member of the familiarized category. In contrast, infants in the 
multiple exemplar condition both learnt the animal-sound pairings and extended the 
property to new members of the relevant category. Together, these findings indicate 
that familiarization with one exemplar of a novel category is not sufficient to pro-
mote 11-month-olds’ learning and extension of a sound property. Familiarization 
with multiple exemplars, however, facilitated both infants’ tendency to form an 
animal-sound mapping and their tendency to extend the sound property to a new 
member of the category.

In a subsequent experiment in this series, we tested 9-month-olds in the same 
multiple exemplar condition presented to 11-month-olds (Vukatana et  al., 2015). 
This experiment yielded interesting developmental differences with 9-month-old 
infants acquiring the unfamiliar animal-sound mappings but not extending the 
sound property to new exemplars of familiarized categories. Thus, at 9 months of 
age, multiple exemplars facilitated learning but did not promote extension of the 
newly learnt property. We will discuss the facilitative role of the presentation of 
multiple exemplars in later sections of the chapter.

In the next set of experiments, we continued our examination of the conditions 
that might facilitate infants’ association of sound properties with unfamiliar animal 
categories. Here, we focused specifically on examining why generalizing from a 
single exemplar was so challenging for 11-month-olds, as described above (Vukatana 
et  al., 2015). This question is particularly relevant as studies using imitation 
paradigms have demonstrated that infants of this same age will extend properties to 
a new category member when presented with one exemplar of a familiar category 
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(i.e., McDonough & Mandler, 1998). One possible explanation for this discrepancy 
in findings may be related to the challenges associated with learning about an unfa-
miliar category (we will discuss this possibility further in later sections of the 
chapter).

To potentially increase infants’ tendency to learn from a single category exem-
plar, we asked whether incorporating a training task at the beginning of the experi-
ment would facilitate 11-month-olds’ acquisition of unfamiliar animal-property 
associations based on exposure to a single category exemplar (Zepeda & Graham, 
2019). In designing our training task, we drew upon studies demonstrating that pre-
senting infants with familiar label-object pairs will shift their performance on a 
subsequent word-learning task (e.g., Fennell & Waxman, 2010; MacKenzie, 
Graham, Curtin, & Archer, 2014; May & Werker, 2014; Namy & Waxman, 2000; 
Vukatana, Curtin, & Graham, 2016). For example, MacKenzie et al. (2014) demon-
strated that English-learning 12-month-olds will only map phonotactically illegal 
words to objects when they are provided with the referential-word training at the 
beginning of the task. Specifically, infants who were first presented with a series of 
familiar objects paired with their familiar word label subsequently mapped phono-
tactically illegal word forms to novel objects. In contrast, infants who were pre-
sented with familiar objects paired with exclamations (i.e., Ooh) did not map the 
illegal word forms to objects.

Drawing upon this research, we added a training phase to our previously devel-
oped looking time paradigm (see Fig. 6.3). First, we presented infants with stimuli 
of familiar animals, paired with their characteristic sounds (i.e., orange cat – meow; 
black dog – bark), at the beginning of the task. We chose cats and dogs as infants as 
young as 4 months reliably categorize stimuli these animals (Kovack-Lesh, Horst, 
& Oakes, 2008; Kovack-Lesh, Oakes, & McMurray, 2012; Quinn & Eimas, 1996). 
Our goal in presenting infants first with familiar animal-sound pairings was to move 
them into “a categorical mode,” which would then assist them in learning informa-
tion about new categories. Next, to orient infants to the nature of the test trials, 
infants were presented with two contrast-teaching trials. On these trials, infants 
saw the two familiar animals, side-by-side, accompanied by one of the sounds 

Training Trial Stimuli
Categorization Training

Dog – Bark

Cat – Meow

Contrast Teaching

Bark

Fig. 6.3  Training trials in 
Zepeda and Graham (2019)
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(e.g., orange cat, black dog; meow). On these trials, the target animal (e.g., orange 
cat) opened and closed its mouth and was enclosed by a colored frame, while the 
nontarget animal (e.g., black dog) kept its mouth closed. Following this training 
phase, infants were presented with two unfamiliar animal categories as in the single 
exemplar condition as described above (Vukatana et al., 2015).

Contrary to our expectations, 11-month-olds neither learnt the unfamiliar animal-
sound associations nor generalized the property to a new member of the same cat-
egory. Thus, the inclusion of training trials did not help infants develop animal-sound 
associations, when presented with a single exemplar of each category. In a second 
experiment, we sought to further reduce the demands of the task by integrating 
training throughout the familiarization phase, rather than placing it at the beginning 
of the task. That is, infants were presented with one familiar animal (i.e., a dog – 
barking) and one unfamiliar animal (i.e., an unfamiliar bird – an unfamiliar sound) 
during familiarization. We reasoned that integrating the familiar animal throughout 
familiarization and reducing the number of unfamiliar animal-sound pairings to be 
learnt would decrease the cognitive demands of the task and increase exposure to 
the familiar animal-sound pairings. In doing so, the number of training trials was 
increased (i.e., from 4 to 12), and thus, infants were given more opportunities to 
learn from by comparing the familiar and unfamiliar animals on sequential trials. 
The results from this experiment paralleled those from the first experiment – infants 
neither learnt nor generalized the unfamiliar animal-sound pairings.

Summary  These findings demonstrate that 11-month-olds do not learn category-
property mappings when familiarized with a single exemplar of an unfamiliar cat-
egories, even with specific training, a finding that stands in contrast to results from 
imitation-based studies with infants 13 months and older. These findings also high-
light the facilitative role of multiple exemplars in learning and generalizing category-
property links, although this effect interacted with age. That is, multiple exemplars 
facilitated both learning and generalization of unfamiliar animal properties for 
11-month-olds but only facilitated the learning of the animal-sound mapping for 
9-month-olds. In the next series of studies, we turn next to consideration of familiar 
categories to see if drawing upon naturally occurring categories would facilitate 9- 
and 11-month-olds’ category-property links.

�Familiar Animal Categories

In this next series of experiments, we investigated whether 9- and 11-month-olds 
will establish category-property links when presented with naturally occurring ani-
mal kinds (i.e., cats and dogs and their characteristic sounds). Our reasoning was as 
follows: First, infants readily distinguish and categorize cats and dogs (e.g., Behl-
Chadha, 1996; Eimas & Quinn, 1994; Oakes & Ribar, 2005; Quinn, Eimas, & 
Rosenkrantz, 1993). Second, as noted above, McDonough and Mandler (1998) 
found that infants of this same age generalize the properties of familiar animals. 
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Finally, we reasoned that infants in our studies were likely to have some experience 
with cats and dogs, through direct exposure to pets or through toys, books, or other 
media. This intuition was confirmed; in all the experiments we report below, the 
majority of infants had some familiarity with cats and dogs through direct or indi-
rect experience. Thus, we hypothesized that infants may have a preexisting repre-
sentation of cats and dogs that they can recruit in our task to extend properties to 
new category members.

In this series, we again examined whether familiarization with single versus mul-
tiple exemplars influenced 9- and 11-month-olds’ category-property generalizations 
(Vukatana et al., 2019; Vukatana, 2017). Here, we organize our presentation of these 
findings as a function of age group to highlight the developmental differences that 
emerged across these experiments.

Eleven-month-olds  Here, we familiarized infants with single exemplars of two 
animal-sound pairings (one cat and one dog making their respective characteristic 
sounds) and examined their category-property mappings in one of two conditions – 
the same-breed condition and the different-breed condition (Vukatana et al., 2019; 
see Fig. 6.4 for the animals presented in each condition). On extension trials in the 
same-breed condition, infants saw new cat and dog exemplars differing only in color 
from exemplars presented during familiarization, allowing us to examine whether 
infants generalized properties to highly similar category members. On extension 

Trial Type Generalization Condition
Same Breed Different Breed 

Familiarization

Cat - Meow

Dog – Bark

Cat - Meow

Dog – Bark

Test
Same

Bark Bark
Test
Extension

Meow Sound 2

Fig. 6.4  Example of stimuli used in same- and different-breed conditions
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trials in the different-breed condition, infants saw new, less perceptually similar cat-
egory members – this condition allowed us to examine infants’ ability to establish 
broader category-property links, as opposed to solely shaped-based associations.

When familiarized with single exemplars of familiar categories, 11-month-olds 
readily generalized characteristic sound properties of dogs and cats to both same- 
and different-breed category members. These findings contrast sharply with results 
from the unfamiliar animal studies reviewed above (Vukatana et al., 2015), suggest-
ing that infants’ preexisting categorical representations for dogs and cats may have 
facilitated their performance. In keeping with this proposal, 11-month-olds did not 
learn or generalize sound properties when familiarized with mismatched animal-
sound pairings (i.e., dog meowing and cat barking) in a subsequent experiment. 
Together, this suggests that 11-month-olds have preexisting expectations about the 
links between the characteristic sound properties and the animal categories that 
facilitate their category-property mappings when presented with a single exemplar 
of each category during familiarization.

Nine-month-olds  When presented with a single member of each familiar category 
during familiarization, 9-month-olds learnt the animal-sound link (Vukatana, 2017). 
Their generalization of this link, however, varied as a function of similarity between 
the familiarized animals and the new category member. That is, 9-month-olds gen-
eralized the sound property to highly similar category members (i.e., the same-
breed animals), but not to the new category members of a different breed. In contrast, 
when presented with multiple exemplars of a category, 9-month-olds learnt and 
generalized the sound property to cats and dogs of a different breed.

Summary  Nine- and eleven-month-olds readily generalized category-property 
mappings when familiarized with a single exemplar of a familiar category to highly 
similar category members. In contrast, when asked to generalize to new category 
members of a different breed, 9-month-olds, but not 11-month-olds, required famil-
iarization with multiple exemplars. These findings also highlight the facilitative role 
of multiple exemplars in learning and generalizing category-property links, although 
this effect interacted with age.

�Learning from One Versus Many: Integrating Findings 
Across Studies

We now turn to integrating our findings on the developmental origins of inductive 
reasoning, incorporating the interacting effects of number of exemplars, category 
type, and age. For ease of reference, we summarize the results from this series of 
studies on infants’ tendency to form category-property links in Table 6.1.

In weaving these results together, we propose that the basic processes by which 
infants link object properties with object categories likely change little across the 
infancy and perhaps even the childhood years. That is, the research reviewed in this 
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chapter thus far suggests considerable developmental continuity in the fundamental 
ability to associate properties with categories. Instead, following from frameworks 
that have advocated for process-oriented approaches to developmental abilities, 
such as infant categorization (e.g., Madole & Oakes, 1999, 2003; Oakes & Madole, 
2000) and speech perception (e.g., Werker & Curtin, 2005), we focus on the condi-
tions that facilitate or hinder 9- to 11-month-old infants’ tendency to form category-
property associations, organizing the discussion around learning from single versus 
multiple exemplars.

Learning from single exemplars  When presented with single exemplars of catego-
ries, 9- and 11-month-olds generalize properties to new category members both in 
our looking paradigms, as reviewed above, and in McDonough and Mandler’s 
(1998) imitation studies but only when presented with familiar categories. Why can 
infants so readily generalize from familiar animals, after seeing a single representa-
tive of the category, and yet fail to even establish one-to-one mappings when the 
categories are unfamiliar? We consider both the demands of the learning task and 
changes in categorical representations with experience.

In the case of familiar animal categories, it is likely that infants activated their 
preexisting categorical representations for these stimuli (due to either direct or indi-
rect exposure to these animals). As we noted earlier, the infants in our studies all had 
some direct or indirect experience with cats and dogs. The activation of such repre-
sentations assists infants in making property extensions when presented with a sin-
gle category exemplar and when asked to generalize to less perceptually similar 
category members of a different breed, in the case of 11-month-olds. Thus, by hav-
ing broad exposure to these animals, infants may have been able to more easily able 
to attend to the category and to the relevant sound property, supporting their ability 
to establish category-property links. In keeping with the notion, research has found 
that infants can integrate information from their exposure to objects outside the lab 
to support categorization in early infancy (Bar-Haim, Ziv, Lamy, & Hodes, 2006; 
Bornstein & Mash, 2010; Hurley & Oakes, 2015).

In contrast, in the case of unfamiliar animal categories, infants were required to 
form category-property links online without drawing upon preexisting information 

Table 6.1  Summary of Vukatana (2017), Vukatana et al. (2015, 2019), and Zepeda and Graham 
(2019)

Nine-month-olds Eleven-month-olds
Learn Generalize Learn Generalize

Unfamiliar animals

Single exemplar

Multiple exemplars

Familiar animals

Single exemplar a b

Multiple exemplars — —
aTo same breed only
bTo same and different breeds
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or prior experiences with the stimuli. During familiarization, infants had to encode 
the perceptual characteristics of each animal and two unique sounds, track the rela-
tion between each animal and its’ particular sound, and then retrieve this correct 
pairing, during the test trials in order to match the sound with the appropriate ani-
mal. Other research suggests that encoding these relations online in dynamic events 
may be difficult for infants under 12 months of age (Baumgartner & Oakes, 2011, 
2013; Perone, Madole, & Oakes, 2011; Perone, Madole, Ross-Sheehy, Carey, & 
Oakes, 2008; Perone & Oakes, 2006). In conjunction with this research, our find-
ings signal that infants’ associative capacities may be challenged when learning 
about unfamiliar animals in dynamic events.

The contrast between infants’ performance with familiar versus unfamiliar cate-
gories can also reflect changes in infants’ categorization processes as a function of 
experience with a category. In particular, Quinn (2002) noted that infants’ represen-
tations shift as they gain more experience with members of a category, moving from 
representing individual exemplars to developing more summary-type representa-
tions, to including representations of both category prototypes and individual exem-
plars. Thus, in the case of the unfamiliar categories, the need to represent each 
animal would have led to an increase in memory demands, resulting in infants’ 
failing to form an animal-sound mapping in the first place. In contrast, with the 
familiar categories, infants likely activated their existing representations, allowing 
them to quickly link the sound property with the animal.

This account can also explain the differences between 9- and 11-month-olds’ 
performance with the familiar categories – recall that 9-month-olds generalized the 
sound properties to the highly similar, but not dissimilar, animals, following famil-
iarization to a single exemplar. That is, due to greater exposure to cats and dogs, 
11-month-olds likely have more robust categorical representations for these animals 
and, more importantly, appear to access those representations during the experimen-
tal task. In contrast, 9-month-olds’ ability to access their categorical representations 
may be in its emergent stages – thus, while a change in one feature (i.e., color) did 
not appear to disrupt their generalizations, greater perceptual variability between 
the familiarization and test exemplars did, leading infants to restrict their property 
extensions, when they had only experienced a single exemplar during and before the 
test trials.

Learning from multiple exemplars  Presenting infants with multiple exemplars 
facilitated infant category-property mappings and generalizations under three con-
ditions: (1) leading 11-month-olds to learn and generalize the properties of unfamil-
iar animals categories, (2) helping 9-month-olds to establish unfamiliar animal-sound 
mappings, and (3) leading 9-month-olds to generalize to less similar members of 
familiar animal categories. We consider these findings from two, not necessarily 
mutually exclusive perspectives.

The findings that familiarization with multiple exemplars promotes infants’ prop-
erty generalizations are consistent with an inductive reasoning phenomenon observed 
in adults and preschool-aged children, namely, that sample size promotes induction 
(the sample size principle; Gutheil & Gelman, 1997; Hayes & Kahn, 2005; Lo, 
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Sides, Rozelle, & Osherson, 2002; Osherson et  al., 1990). For example, Lawson 
(2014) demonstrated that 3-year-olds were more likely to generalize from larger 
sample than from smaller samples when items were presented sequentially (vs. 
simultaneously). In keeping with this notion, 9-month-olds’ tendency to generalize 
properties of dogs and cats to less similar category members when presented with 
three exemplars, but not with one exemplar, during familiarization may reflect adher-
ence to this principle. That is, familiarization with multiple exemplars may have 
highlighted the sound as a property of the broader category. This explanation is 
particularly fitting as 9-month-olds did both learn the animal-sound mappings and 
generalize to highly similar category members without the support of multiple 
exemplars. Thus, in this case, more exemplars of familiar categories, presented 
sequentially, led to broader generalizations.

An explanation based on adherence to the sample size principle alone, however, 
is less fitting when one considers the role of multiple exemplars in infants’ unfamil-
iar category-property links. Recall that in these cases, 11-month-olds moved from 
neither learning animal-sound mappings nor generalizing properties with single 
exemplars to both learning and generalizing. Thus, it was not a matter of moving 
infants from a more restricted generalization pattern to a broader generalization pat-
tern. Instead, we propose that presenting multiple exemplars engaged a comparative 
process, allowing infants to attend to the shared commonalities within a given cat-
egory (see Chap. 5 for discussion of how comparisons can highlight deeper com-
monalities between exemplars). That is, multiple exemplars led infants to detect 
which features were most relevant to and shared within the category (i.e., shape and 
sound) and devote less attention to exemplar-specific features (i.e., color), facilitat-
ing the formation of a category and the generalization of the sound property to new 
category members.

An explanation based on comparison as a general learning mechanism is a con-
sistent research in a number of domains in cognitive development (as illustrated 
beautifully in several chapters in this volume). With specific focus on categoriza-
tion, presenting more than one exemplar leads preschoolers to detect commonali-
ties among objects that would likely not otherwise be considered as a basis for 
categorical decisions (Gentner & Namy, 1999, 2004; Graham, Namy, Gentner, & 
Meagher, 2010; Namy & Gentner, 2002; Namy, Gentner, & Clepper, 2007). This 
process is evident in infants’ categorical decisions as well – for example, Oakes and 
Ribar (2005) found that 4-month-olds differentiated between the categories of cats 
and dogs when familiarization items were presented in pairs, but not when pre-
sented sequentially, indicating that the opportunity to compare items simultane-
ously facilitated category formation and differentiation (Oakes & Ribar, 2005). By 
6 months of age, however, infants formed exclusive categories of cats and dogs 
when the familiarization stimuli were presented sequentially. Quinn and Bhatt 
(2010) also demonstrated that exemplar variability across trials, but not within tri-
als, facilitated 6- and 7-month-olds’ formation of shapes. Akin the explanation we 
propose for our findings, Quinn and Bhatt propose that exemplar variability high-
lighted shared commonalities and drew infants’ attention away from individual 
exemplar features.
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Why, however, did multiple exemplars not facilitate 9-month-olds’ generalization 
of unfamiliar animal properties? We posit that this finding reflects an interaction 
between the comparison process and 9-month-olds’ cognitive processes, specifically 
memory. Research has demonstrated that visual short-term memory increases in 
memory capacity between 6.5 and 12 months of age (Rose, Feldman & Jankowski, 
2001; Ross‐Sheehy, Oakes, & Luck, 2003). Thus, it is possible that the 9-month-olds 
had difficulty attending to and/or encoding all the relevant features of the unfamiliar 
animals (e.g., shape, sound) when presented with multiple category exemplars. 
Consistent with this interpretation, it has been proposed that whether a cue available 
during learning “facilitates” categorization depends on the information-processing 
capabilities of infants at a given developmental stage (i.e., the demands of the task 
must match the capabilities of infants; Madole & Oakes, 1999, 2003; Oakes & 
Madole, 2000). Thus, changes in information-processing abilities (e.g., attention, 
memory) can account for older infants’ ability to benefit from the presentation of 
multiple exemplars in property generalization tasks and 9-month-olds’ failure to do 
so. Results from the familiar animal categories demonstrate that 9-month-olds can 
indeed establish category-property links. Thus, it is possible that with more support 
(e.g., longer familiarization phase, more exemplars), 9-month-olds would benefit 
from comparing multiple exemplars when presented with unfamiliar categories.

Other research has also shown that the facilitative role of comparison on infants’ 
categorization is context-dependent (e.g., Kovack-Lesh & Oakes, 2007; Oakes & 
Ribar, 2005; Reznick & Kagan, 1983). For example, Kovack-Lesh and Oakes 
(2007) found that 10-month-olds distinguished categories of horses and dogs when 
familiarized with different pairs of items from the same category (e.g., golden 
retriever and black lab), but not when familiarized with pairs of identical items (e.g., 
two golden retrievers). In this study, infants were afforded the opportunity to com-
pare members of a category; however, the facilitative effect of comparison only 
emerged when infants compared different members of the same category. Thus, 
these studies suggest that infants’ ability to take advantage of information that can 
facilitate categorization (e.g., the opportunity to compare) varies with the context in 
which exemplars are presented.

Taken together, the findings from this series of studies document the conditions 
that promote learning and generalization of properties to category members between 
9 and 11 months of age. In conjunction with other research, our results highlight 
that early category-property inferences engage highly dynamic and context-
dependent processes.

�Conclusions

We focused this chapter on a fundamental cognitive process that is endemic in 
human cognition, namely, category-based inductive reasoning. We began by tracing 
the development of this ability in early childhood through infancy, noting the devel-
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opmental continuity across the preschool and late infancy years, particularly in the 
ability to privilege category information over perceptual similarity in guiding induc-
tive reasoning. We next turned to a discussion on the origins of inductive reasoning, 
highlighting both 9- and 11-month-olds’ abilities and limitations in generalizing the 
properties of both familiar and novel animal categories. The results of the studies 
reviewed in that section document that adherence to a fundamental inductive prin-
ciple, premise-conclusion similarity, emerges as early as 9 months of age. Infants’ 
adherence to this principle, however, varies as a function of age, category type, and 
the size of the sample (single vs. multiple exemplars), indicating that this ability 
reflects highly dynamic and context-dependent processes. Finally, returning to the 
focus of this volume on learning from multiple exemplars, we conclude that infants 
will generalize from a single exemplar, when they can engage an underlying cate-
gorical representation. When asked to form a novel category online and generalize 
properties to new category members, seeing more than one exemplar of a category 
paves the way.
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Chapter 7
Learning Individual Verbs and the Verb 
System: When Are Multiple Examples 
Helpful?

Mutsumi Imai and Jane B. Childers

Abstract  This chapter focuses on the problem of verb learning, including learning 
the meaning of a single new verb and learning the verb system in a language. Verb 
learning occurs in three phases: finding the core of meaning, discovering dominant 
patterns in a language, and delineating boundaries between individual verbs. In the 
first phase, two types of perceptual similarity are shown to be useful—sound sym-
bolism and object similarity. Children benefit from seeing high-similarity examples 
before low-similarity ones (progressive alignment), as well as from contrast. After 
describing how children may discover patterns within a language, we focus on how 
children learn a verb within an overall system by describing verbs for carrying/hold-
ing in Chinese. Children between 3 and 7 years produced fewer verbs than their 
mothers, better approximated adult verb meanings with age. MDS and INDSCAL 
analyses reveal they attended to the objects in the events and reveal three semantic 
islands of verb meaning. An entropy analysis shows that there is an early stage of 
verb learning in which input frequency is important and a later stage in which the 
degree of boundary overlap with other verbs affects their ease of acquisition. In 
sum, the chapter shows children’s use of multiple exemplars for verb learning, using 
structure mapping as a theoretical framework, and addressing the whole of verb 
learning in development.
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�Children’s Challenge in Acquiring the Lexical System of Verbs

What does it take for children to learn language? Children need to learn individual 
words of course. Inspired by the philosopher W. V. O. Quine who characterized the 
process of word learning as a problem of induction, pioneering developmental psy-
chologists set out to create a new research paradigm which rightly pointed out that 
children need to learn words by inferring their meanings on their own, and that their 
inferences need to be constrained because there are too many possible inductive 
generalizations one can make from a single instance (Carey, 1978; Gleitman, 1990; 
Markman, 1989; 1990).

Decades of work have been devoted to identify how children make inferences 
about the meanings of words they encounter for the first time, mostly focusing on 
strategies children use to learn nouns. Specifically, some researchers have proposed 
that biases or constraints help children identify the potential referent in the scene, 
such as the whole object or the mutual exclusivity bias (Markman & Hutchinson, 
1984; Markman & Wachtel, 1988). Others have examined how children determine 
the range of generalizations they should make, proposing word learning biases 
including the taxonomic bias and the shape bias (Imai, Gentner, & Uchida, 1994; 
Landau, Smith, & Jones, 1988; Markman, 1989). The principle of contrast is an addi-
tional constraint proposed for word learning, though it is based on knowledge about 
the pragmatics of language (Clark, 1990). Still other researchers have highlighted 
extralinguistic information including children’s use of the speaker’s facial expres-
sions, eye gaze, and the informativeness of the speaker’s utterance (e.g., see Chap. 9).

When compared to these many cues that inform noun learning, cues that could 
be used for inferring a new verb’s meaning are less abundant. For toddlers, inferring 
the meanings of verbs is much more challenging than it is for nouns for a number of 
reasons, and children need to overcome a plethora of problems to get to adult-like 
meanings of verbs. First, verbs are temporally dynamic and ephemeral. In real life, 
children observe various actions in continuous sequence rather than a single, iso-
lated action. It is thus difficult to determine when the action denoted by the verb 
begins and when it ends (Gentner, 1982; Gentner & Boroditsky, 2001; Imai, Haryu, 
& Okada, 2005).

Children face even further challenges in determining the appropriate range of gen-
eralizations for a newly learned verb. That is, how should that verb be used in new 
situational contexts, sentence frames, or with new entities? The visual information 
available to children when they hear a verb is likely to be very rich. To be able to 
generalize the verb, children need to extract just those parts of the event that link to 
that verb’s core semantic features which serve as a basis for generalization. For that 
purpose, they first need to find out which objects and relations in the scene are rele-
vant for guiding their later verb generalizations. When children see events while 
hearing a verb, they often see multiple objects, actions, and relations which are 
unsegregated. They need to deduce which aspects of an action link to the core 
meaning of a specific verb, including which objects may be required as a part of that 
verb’s meaning (e.g., a stapler for the verb “staple” in English) and which are optional.
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Separating the invariant elements in a scene from the variable ones is necessary 
but not sufficient to get to the meaning of a verb. Some verbs denote a movement 
done in a particular manner (e.g., swagger), while other verbs denote a direction of 
motion (e.g., rise, enter), and for other verbs, the resulting state of the object is 
important (e.g., crush). Thus, children need to determine whether they should pay 
attention to manner, path/direction, or result of the action to extract the meaning of 
the new verb. There are substantial crosslinguistic differences in how these features 
are incorporated into verb meanings (Gentner, 1982; Talmy, 1975, 1985), and chil-
dren who attend to common patterns in their language would benefit. For example, 
manner, but not path, tends to be incorporated in verb meanings in English, whereas 
the reverse pattern is true for Spanish. In Japanese, in addition to path, ground infor-
mation (the property of the object or landscape through which the figure object 
moves) is likely to be included (Muehleisen & Imai, 1997). This means that under-
standing how likely it is that a particular semantic feature is a key element in verb 
meanings could be important for making inferences about the meanings of new verbs.

If the child is fortunate enough to find those semantic features that are likely to be 
incorporated in her ambient language, this is a great accomplishment, but it is not the 
end of her challenges. The lexicon is not merely an assembly of words each standing 
on its own; rather, it is a complexly structured system in which words are contrasted 
one another along multiple dimensions at multiple levels (Saji et al., 2011; cf. de 
Saussure, 1916/1983). Thus, in order to be able to use words according to the con-
ventions of the adult speakers of the ambient language community, children need to 
know how a particular word differs from the other words that surround it in the same 
semantic domain. For example, in English, the meaning of the verb “walk” is under-
stood in relation to the verbs like “run,” “jump,” and “crawl.” Likewise, the under-
standing of the meaning of the verb “tear” requires learning how this word differs 
from the similar-meaning verbs such as “cut,” “break,” “rip,” and “split”.

Importantly, the way a particular semantic domain is divided into a set of verbs 
can also differ across languages (e.g., Bowerman, 1982; Gentner, 1982; Levin, 
1993). For example, English divides the domain of human locomotion finely, con-
trasting motions with different manners. In contrast, Japanese distinguishes locomo-
tion broadly with only several verbs. In another semantic domain, that is in the 
domain of carrying, Mandarin Chinese distinguishes the range of motions that 
English speakers simply call by the one verb “carrying” or “holding” with more than 
20 different verbs, but it does not make the distinction that is critical for English, 
that is, whether the agent is moving or not moving. Because the boundary of a verb’s 
meaning requires delineation with all neighboring verbs, children eventually need to 
learn all of the verbs in a given semantic domain and how the entire semantic domain 
is carved up by them to acquire the precise meaning of a single verb.

In this chapter, we will argue that the acquisition of a verb lexicon is grounded 
in several fundamental cognitive capacities that have been noted to be important for 
almost all other types of learning. These abilities include (but are not limited to) the 
ability to detect perceptual similarity, the ability to form categories, the ability to 
track statistical distributions, the ability to segment events, and the ability to read 
the intention of the conversational partner. However, we will also argue that these 
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basic cognitive functions alone are not sufficient for learning of meanings of indi-
vidual verbs, let alone for acquiring a mature verb lexicon in which verbs in the 
same semantic domain are meaningfully related and woven into a system. What is 
critical is the ability to use these core cognitive faculties to form some initial verb 
meanings, and then the willingness to continuously bootstrap and reorganize these 
meanings to build more abstract and adult-like representations.

This chapter explores how a bootstrapping process could help children move 
toward an adult-like representation of individual verbs, as well as how children build 
a connected system of verb representations. In so doing, we will highlight three 
phases that are particularly important for verb meaning acquisition: (1) extraction of 
the verbal core from other elements of an action event, (2) finding the dominant lexi-
calization pattern for the ambient language, and (3) delineating boundaries between 
similar-meaning verbs and constructing the lexical system for a semantic domain.

We begin in the next section (section “Bootstrapping from Perceptual to 
Relational Similarity in Extracting the Core of Verb Meanings”) by exploring how 
children could use two types of perceptual similarity to bootstrap themselves into an 
abstract representation of verb meanings, including how they extract a verbal core 
from other elements of a scene using similarity they can perceive without much 
experience with verb learning. The first kind of similarity is similarity between 
sounds and meaning, which is called sound symbolism and is a form of resemblance 
between properties of a linguistic form and the sensorimotor and/or affective prop-
erties of referents (Imai & Kita, 2014; Perniss & Vigliocco, 2014). The other kind 
of similarity is the similarity of objects between the original action event and a new 
event to which the verb should be generalized; this type of similarity influences 
children’s ability to compare and learn from multiple events.

In the section “An Additional Mechanism for Verb Learning: Contrast”, we will 
explore how children find patterns dominant in their ambient language, moving 
from reliance on universally shared cues to language-specific linguistic features in 
their inference of meanings of verbs. In the  section “Verb Meaning Acquisition 
Within the Constraints of the Lexical System”, we will outline how children con-
struct a semantic domain by delineating boundaries between verbs in a domain and 
explore the role of comparison and contrast for this process. In summary, although 
the problem of acquiring verbs is complex, we will propose ways children tackle this 
difficult problem using varied (mostly domain-general) strategies, including strate-
gies linked to the comparison of examples (when forming initial verb meanings) and 
the comparison and contrast of individual verbs (when forming the verb lexicon).

�Bootstrapping from Perceptual to Relational Similarity 
in Extracting the Core of Verb Meanings

Young children recruit constellations of cues—conceptual, social, pragmatic, and 
distributional—to constrain their inferences about word meanings (e.g., Clark, 
1990; Hollich, Golinkoff, & Hirsh-Pasek, 2007; Imai & Gentner, 1997; Imai & 
Haryu, 2001; Tomasello & Barton, 1994; Tomasello & Kruger, 1992), but not all 
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cues are available from the earliest stages of lexical development. For verb learning, 
it has been well established that children use the argument structure of the sentence 
when inferring verb meanings (Fisher, Gleitman, & Gleitman, 1991; Gleitman, 
1990; Naigles, 1990), but it is not clear whether this knowledge is available for 
children to learn the first set of verbs or whether this knowledge is learned from 
experience with a language (e.g., through statistical learning; see, Chap. 4). 
Furthermore, although syntactic cues are helpful for mapping a new verb to a rough, 
macro level concept (e.g., whether it should be mapped to a caused motion or a 
spontaneous motion; Fisher, 1996; Lidz, Gleitman, & Gleitman, 2003; Naigles, 
1990), they are not as useful for helping children to find the differences among 
words that appear in the same set of argument structures (e.g., walking vs. running).

�Use of Multimodal Similarity (Iconicity)

What other cues are available for very young children? It is reasonable to think that 
a biologically endowed ability to map multimodal information—especially the abil-
ity to detect similarity between sound and vision, or sound symbolism—provides 
one such cue. For example, Ngas (an African language) includes the following 
verbs: su (“to run”)/su rututu (“to run making this sound”), jə (“to come”)/jə ɓulm 
(“to come moving like a python”), melp (“to shine”)/melp nkar-nkar (“to shine 
brightly”), and pye (“white”)/pye pwak-pwak (“really white”) (Don Burquest, per-
sonal communication).

To establish whether children attend to sound symbolism, Imai et al. (2008) and 
Kantartzis, Imai, and Kita (2011) tested whether Japanese- and English-speaking 
3-year-olds could find a core meaning for a newly taught verb and generalize it to a 
new situation in which an actor is doing the same motion in three different condi-
tions. In the experimental condition, the word was inherently similar in its sound 
and the type of motion to which it referred (i.e., it was a mimetic-based word). For 
example, in one study, a word, presented as a verb “choka-choka-shiteru” in 
Japanese and as “doing choka-choka” in English, was paired with a light and fast 
walking motion with small steps. In the first control condition, the mimetic-based 
nonsense word was paired with a different motion that did not match in a sound-
symbolic way. In the second control condition, a nonsense word that resembled a 
typical monosyllabic verb in Japanese and English (e.g., neke-tteiru or fepping, 
respectively) was paired with the same motion from the experimental condition; as 
a nonmimetic word, it did not provide a sound-symbolic cue.

Consistent with results from previous studies (Golinkoff et al., 2002; Imai et al., 
2005; Imai et al., 2008), in the two control conditions, both Japanese- and English-
speaking 3-year-olds failed to generalize the newly taught verb to the identical 
action performed by a different actor (see also Maguire, Hirsh-Pasek, Golinkoff, 
and Brandone (2008) for related findings). However, in the experimental condition 
in which the novel verb sound-symbolically matched the action, not only Japanese 
3-year-olds but also English-speaking 3-year-olds (who were not familiar with the 
sound-symbolic system of Japanese mimetics) were able to generalize the verb to a 
new event (Kantartzis et al., 2011; see also Yoshida (2012) for similar findings).
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Thus, regardless of the language they were acquiring, these results show that 
children have the ability to detect inherent similarities between a word form and its 
meaning and use this information to extract the core of verb meanings from other 
elements involved in the scene, particularly objects. This differs from instances in 
which sound symbolism is not available. In these cases, children tend to have diffi-
culty separating the object—either the agent or a patient object—from the action 
seen in a single scene (e.g., see Imai et al., 2005). They are able to overcome this 
tendency either by using sound symbolism cues (if available in their language), 
which could help children understand that objects are not as central the meaning of 
a particular verb, or through the comparison of multiple instances (a topic we will 
return to in sections “An Additional Mechanism for Verb Learning: Contrast” and 
“Verb Meaning Acquisition Within the Constraints of the Lexical System”).

�Use of Object Similarity

As discussed, children can use sound symbolism to identify the core meaning of the 
verb from the event scene (Imai et al., 2008; Kantartzis et al., 2011; Yoshida, 2012), 
which usually includes a set of objects that are important to the meaning of that new 
verb (i.e., either agent, patient, instrument, or other object); however, this cue may 
not be always available. As noted earlier, extracting the core meaning of a verb 
involves understanding relational similarities between different events, but this does 
not come naturally for young toddlers (Gentner & Kurtz, 2005; Gentner & 
Rattermann, 1991), and this is a central reason why young children have difficulty 
generalizing a newly learned verb to a scene with the same action but different 
objects (including agents). Providing evidence for this assertion, Imai and col-
leagues (Imai et al., 2005, 2008) tested 3- and 5-year-old children from three differ-
ent language groups—Japanese, Chinese, and English. Six sets of video action 
events served as stimulus materials. Each set consisted of a standard event and two 
test events. In each standard event, a young woman was shown doing a novel action 
with a novel object. The two test events were variants of the standard event. In one, 
the same person was doing the same action with a different object (Action-Same-
Object-Change, henceforth AS). In the other, the person was doing a different action 
with the same object (Action-Change-Object-Same, henceforth OS). While watch-
ing the standard event, a child heard a novel verb. The child was then shown the two 
test videos and was asked to which event the target word should be extended. In this 
study, if children understand that a verb maps to an action, and that the agent and the 
object of the action event can be changed across different instances of the event 
referred to by the verb, they should select the AS event to extend the novel verb.

Across languages, 3-year-olds performed at chance, while 5-year-olds could reli-
ably extend a novel verb to an event involving the same action but a different object. 
Thus, by 5 years, children in each of the three languages were successful in general-
izing verbs by action following a single exposure of the verb in the learning phase. 
Importantly, structural alignment theory predicts the comparison of multiple exam-
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ples leads observers to attend to relations or highlight relations (see Chap. 5), and 
this is the process younger children may need to overcome an attention to objects 
during verb learning. Additionally, having objects which are higher in similarity 
between a base event and a target event can help children to successfully compare 
examples to each other (e.g., Gentner, Loewenstein, & Hung, 2007) or to notice the 
relational similarity between the two events (Gentner & Rattermann, 1991). This 
theory maintains that children (and adults) acquire abstract relational concepts by 
aligning elements across the source and target domains (e.g., events, scenes) hierar-
chically starting with concrete, directly perceptible elements (objects). The align-
ment of these elements across instances leads to the alignment of similar abstract 
relations between elements in the two instances, which drives attention to common 
relations (see Gentner, 2010). Similarity between the source and the target makes 
the alignment of the structures easier, and experience with high-similarity compari-
sons helps naïve observers learn how to align more varied examples (which is called 
“progressive alignment” in this theory). Building on this prediction that high simi-
larity is useful, we expected that, when overall perceptual similarity between the 
source event (to which the verb is given) and the target event (to which the verb 
should be generalized) is increased, children would be better able to align a single 
example of an event linked to a verb with a new event and that this would help chil-
dren grasp the core meaning of a new verb.

To examine this possibility, Haryu, Imai, and Okada (2011) manipulated object 
similarity and tested Japanese-speaking 3- and 4-year-olds on a verb generalization 
task. In Study 1, the structure of the stimuli was exactly the same as the previous 
studies by Imai et al. (2005, 2008), but here there were two conditions—the similar 
object condition and the dissimilar object condition. Consistent with the prediction 
from structural alignment theory, children were successful in generalizing the verb 
to the event containing the same action in the similar object condition (e.g., objects 
were similar in shape and size) but not in the dissimilar object condition, although 
the benefit  of object similarity was less strong for 3-year-olds as compared to 
4-year-olds because the attention to objects was very strong in 3-year-olds.

To investigate whether experience with high-similarity comparisons could help 
children with low-similarity mappings (as predicted by the theory), in Study 2, 
some children were given experience with high-similarity pairs. Specifically, in this 
study, Japanese-speaking 4-year-olds were assigned to either a similar-dissimilar 
(SD) condition or a dissimilar-dissimilar (DD) condition. Children in both condi-
tions received exactly the same sets of single learning trial + test trial for the last 
four trials with exactly the same instructions and the procedure. However, the two 
conditions differed in the first four trials. In those first four trials, children in the SD 
condition experienced pairs of learning trials and test trials with similar objects, 
while those in the DD conditions experienced trials with dissimilar objects. 
Consistent with the object similarity bootstrapping hypothesis (or “progressive 
alignment” in structural alignment theory; e.g., Gentner, 2010), after having suc-
cessfully generalized verbs to the same action event, the children in the SD condi-
tion were able to generalize the verbs even when the object in the target scene was 
perceptually dissimilar from that in the original scene.
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A related set of studies by Childers et al. (2016) also shows 2½- and 3½-year-old 
children benefit from progressive alignment (or high object similarity) experience 
when learning new verbs. In their first study, children were shown live events in 
which the experimenter used objects to demonstrate a pair of similar events and then 
a pair of more varied ones (progressive alignment condition). This condition was 
compared to a condition in which children saw two pairs of varied events and to a 
control condition in which children saw a single repeated event during the learning 
phase. At test, all children were asked to enact the event using new objects that were 
similar to the prior ones (i.e., close extension trial) and were more varied (far exten-
sion trial). Results showed that the influence of the high-similarity comparisons was 
most prominent for the test trials with varied objects (far extension trials). In espe-
cially these trials, children with the high-similarity experience extended the verbs 
and differed from the control group whereas children in the all varied condition 
did not.

A second study used video events and an eye tracker. Children saw split screen 
pairs of events with some children initially seeing a similar pair of events than a 
more varied one (progressive alignment or PA condition) while others seeing two 
pairs of varied events. Again, children saw the same pair of events before test, and 
their looking during this pair was tracked using the eye tracker. Eye tracking results 
showed increases in looking to two important objects (agents and affected objects) 
in the events in the PA condition only in the 2½-year-old age group. At test, there 
were successful verb extensions by 3½-year-olds only in the PA condition. Thus, 
this second study showed that children’s looking patterns during learning were 
influenced only when there was an initial high-similarity pair and that benefits of 
this similarity first experience at test were seen by 3½ years. Importantly, these two 
studies with different procedures, as well as the studies by Haryu et al. (2011), pro-
vide converging support for structural alignment theory. More specifically, Haryu 
et al. (2011) show that experience of high object similarity between one learning 
event and test helps to boost 4-year-olds’ ability to be successful when there is low 
object similarity between a learning event and a new test event. Childers et  al. 
(2016) add to this finding by showing that experience with a pair of events during 
learning that are more similar to each other helps children produce more creative 
enactments with more varied objects (as young as 2½ years) and extend the new 
verb to new video events by 3½ years. Thus, as noted, these results from two 
different labs, using different types of events and stimuli with different methods, 
provide converging results that object similarity is an important cue for children to 
bootstrap their way into more successful comparisons of varied events and/or more 
varied verb extensions.

Preliminary data from a new study from the Childers’ lab also is beginning to 
show that children in this age range benefit from progressive alignment experience 
even when events to be compared are separated in time. In this study, using video 
stimuli shown on an iPad, children in a PA condition with 1-minute delays between 
events in the learning phase are successfully extending new verbs to new events at 
test, while children in an all varied condition are not. This new study is important 
because, in everyday life, relevant events do not usually follow each other in time.
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�Summary and Implications

In this section, we have discussed children’s use of similarity to extract a core of verb 
meaning, reviewing two kinds of similarity: iconic similarity carried in the sound of 
the word and object similarity. Both types of similarity are perceptible and easily 
accessible, but each works somewhat differently. The iconicity between word form 
and meaning helps children realize that it is the manner of the motion that the novel 
word denotes because the sound of the word is inherently “similar” (iconic) to the 
manner of the motion. In contrast, in the second case, object similarity invites children 
to align events, helps them successfully perform the correct alignments across the 
examples, and helps them deduce how a new event fits with an existing verb meaning 
(from learning to test trials). In both cases, children show an ability to use perceptual 
similarity across instances as a way to get to relational sameness. When this experi-
ence is repeated, it can help children discover that a critical core of verb meanings is 
actions or relations, apart from specific objects. This insight then can help them move 
toward the ability to generalize verbs without needing to rely on similarity. These two 
processes help children learn how to learn a verb. In this sense, they should be con-
sidered driving forces for the acquisition of abstract meanings of individual verbs.

�An Additional Mechanism for Verb Learning: Contrast

One more example-based mechanism to consider that differs from the two mecha-
nisms above is children’s attention to contrastive information. Contrast provides 
another way for children to get past object similarity. Children learning verbs can 
have access to two types of contrast information: explicit contrast (e.g., “That’s not 
x-ing. It’s y-ing”) and implicit contrast (e.g., “She’s x-ing and they’re y-ing.”); in 
everyday life, implicit contrast information is likely more common than are explicit 
statements. Contrast could help children learn a verb because it helps children 
narrow the range of meaning of one verb based on the scope of meaning of another 
verb or helps children delineate individual verb meanings before they have a com-
plete understanding of the entire “verb neighborhood.” Very few prior studies have 
included contrastive statements in a verb learning task, and thus more studies are 
needed in this area (see Au & Markman (1987), Au & Laframboise (1990), Haryu 
& Imai (2002), Waxman & Klibanoff (2000), Booth & Waxman (2009) for studies 
of contrast in noun and adjective learning).

One study that did include contrast information in a verb-learning task is 
Waxman, Lidz, Braun, and Lavin (2009). In their study, 24-month-olds were shown 
dynamic video events with an agent performing an action on an inanimate patient 
(e.g., a man waving a balloon). During the learning phase, four events were shown 
that could be compared (i.e., the man was shown waving four different balloons 
with varying shapes), and children in a verb condition heard sentences containing 
new verbs (e.g., “Look! The man is larping a balloon”). (There was also a noun 
condition and a no-word control.) Next, two more events were shown, providing 
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contrastive information (“Uh-oh, he’s not larping that”). Then children saw a ran-
domly chosen repeated event from the first four trials one more time and heard a 
positive sentence (e.g., “Yay, he’s larping that”).

At test, children saw two scenes simultaneously. In Study 1, the test trial pairs 
showed a familiar action (the man waving a balloon) vs. a novel action with the 
same object (e.g., the man was tapping the balloon). Children in the verb condition 
preferred the familiar test trial even though at baseline, they preferred the novel test 
trial. A weakness in these data is that this looking did not exceed 50%, though the 
researchers argue the switch from baseline pattern is important (and was found only 
in the verb condition).

In a second study, the test trial was changed to show the same familiar test scene 
(e.g., man waving a balloon) vs. a new test scene of the same action but with a dif-
ferent object (e.g., man waving a rake). In some ways, this is a more awkward verb 
learning study as the action is the same in both test trials; however, the authors 
predicted that children in the verb condition could then maintain their looking to the 
novel test event they prefer at baseline (if they can overlook the object seen in the 
familiar test scene) while children in the noun condition looked longer at the famil-
iar test event. The results were overall consistent with the authors’ predictions.

As a whole, focusing on the verb learning condition in these two studies in this 
paper, results suggest that 2-year-olds benefit from four comparison trials, an 
explicit contrast trial, and a repeated comparison trial when learning a new verb. In 
other words, we can make 2-year-olds map a novel verb to an action and generalize 
it to a scene that involves the same action with a different object if we provide a 
maximum scaffolding by giving cues comparison and contrast. However, although 
the results are impressive at this young age, the exact mechanism by which it is 
effective is unclear. Could children perform similarly without the contrast trial? 
Do they need the reminder before test with the familiar event? Possibly not, though 
it is unclear.

Roseberry, Hirsh-Pasek, Parish-Morris, and Golinkoff (2009) also conducted a 
verb learning study that included implicit contrast in one of the test trials and used 
looking time as the dependent variable. In that study, 2- and 3-year-olds who heard 
a novel verb (e.g., “Look at Cookie Monster wezzling!”), in one of the four test tri-
als, heard a different novel verb (implicit contrast statement) (“Where is glorp-
ing?”). On that trial, they looked equally to the new event depicting the action that 
went with the newly learned verb and a new event depicting an action they had not 
seen. This suggests that they were beginning to understand that hearing a different 
new verb should lead them to seek out a new event, but if they had looked longest at 
the newest event, their looking behavior would have been more convincing.

Saji et al. (2011) also included implicit contrast into their study of verbs linked 
to the actions of holding and carrying in Chinese (we provide more details about 
this study in the next section). One important finding was that the understanding and 
use of varied verbs in Chinese for these actions develops between 3 and 7 years and 
becomes more adult-like with age. One way the organization of verb meanings 
changes is children learn or refine the meaning of related verbs over time, or through 
a process of implicit contrast.
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Childers, Hirshkowitz, and Benavides (2014) also conducted a set of studies that 
tested children’s verb learning when given explicit and implicit contrast statements. 
In Study 1, 3½-year-olds participated in an explicit contrast condition, implicit con-
trast condition, or control. In the experimental session, the experimenter showed 
children two different actions using the same objects. In the explicit contrast condi-
tion, they heard a positive statement for one (e.g., “Look! I’m meeking it!”) and a 
negative statement for the other (“Look! I’m not meeking it!”). In the implicit con-
trast condition, they heard a different verb for each event (e.g., “Look! I’m meeking 
it” and “Look! I’m koobing it”), and in the control, they heard general sentences 
while seeing both events (e.g., “Look what I can do!” and “Now look what I can 
do”). Each action and sentence was repeated once, and at test, children were given 
the objects and asked to perform the action (“Can you show me meeking?” or, in the 
control, “Can you do it?”). Events were counterbalanced so that a particular event 
was correct for only half of the participants.

Results showed that both contrast conditions differed from the control condition 
and that they did not differ from each other. Children in the implicit contrast group 
differed significantly from the control group responses and from chance, while chil-
dren in the explicit contrast group tended to differ from the control group but also 
differed significantly from chance. Thus, this first study showed that 3½-year-olds 
benefited from implicit and explicit contrast statements, and perhaps from compari-
son as they had access to repeated events, in initially learning a new verb.

Study 2 extended these results by including a new set of objects during the learn-
ing phase. The same test objects were included (to be able to compare results with 
Study 1), but in this study, there were new objects included in the learning sets, and 
thus children needed to extend the verbs at test. Children participated in an explicit 
contrast condition or a control condition; in the control, children heard a single verb 
and only saw that event with that verb repeated (so had no contrastive information). 
Children in the explicit contrast condition were more successful at extending the 
new verbs than were children in the control condition, but children in both condi-
tions struggled, performing at rates lower than chance. Thus, they benefitted from 
contrast but had trouble extending a new verb to new objects under these conditions. 
(This fits with a prior study by Namy & Clepper (2010), which showed that com-
parison may be better than contrast for learning novel superordinate terms.)

In a third study, 2½-, 3½-, and 4½-year-olds were shown events that could be 
compared and contrasted. Events were shown in pairs, but pairs differed over the 
three trials in the learning phase. Thus, children heard positive and negative state-
ments about actions within a pair with a single novel verb (e.g., “koobing” and “not 
koobing”) and then saw a new pair of actions that could be compared with the prior 
pair and that also included positive and negative explicit contrast statements. At test, 
2½-year-olds performed at rates that were significantly below chance, 3½-year-olds 
performed at chance—but also performed significantly better than did 3½-year-olds 
in Study 2 who only had contrastive information—and 4½-year-olds succeeded. 
Additionally, although 3½-year-olds as a group were performing at chance, as indi-
viduals, the number of children who were able to be consistently successful 
exceeded chance.
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In comparing this result to the prior result in the Waxman, Lidz et al. study, here 
children had to process interleaved trials of comparison and contrast. Namy and 
Clepper (2010) showed that contrast was most useful in a categorization task when 
it followed comparison trials, as in the Waxman, Lidz et al. study. This seems to 
provide us with important insights when considering how children learn verbs in 
everyday contexts. It may be that children need to use comparison to learn a new 
verb first, including linking that new verb to actions they have seen without extend-
ing it to new events, and then later, as other verbs are learned, they are able to use 
more contrastive information to build their lexicon (as in Saji et al. (2011) described 
later in this chapter).

�Verb Meaning Acquisition Within the Constraints 
of the Lexical System

Although children’s use of contrast begins to address the question of how children 
infer the meanings of verbs with some consideration of other verbs, in this section, 
we will consider how children build up a lexicon more deeply. Segregating the 
action from other elements of the event scene and learning individual verbs are 
important achievements, but even when children can do this, they still have a long 
way to go to develop the mature lexicon adults possess.

�Complexity of the Semantic Structures in Lexical Domains 
in the Real World

In the real world, the lexicon is an extremely complex system, in which every word 
form in a language expresses a unique meaning (Bolinger, 1977; Clark, 1990; 
Lyons, 1963), and the meaning of any particular word depends on how the word is 
related to other similar words (Aichison, 1987; de Saussure, 1916/1983; Lyons, 
1977; Miller & Johnson-Laird, 1976). Furthermore, the lexicon consists of struc-
tured subsets (Cruse, 1986; Fillmore, 1982; Fillmore & Atkins, 1992; Levin, 1993; 
Pustejovsky, 1995), whereby words are contrasted with one another along different 
semantic dimensions (cf. de Saussure, 1916/1983). Each language has a typical con-
flation pattern, but there is always a set of verbs that do not follow the typical pat-
tern. Thus, although it is still helpful to consider language-specific conflation 
patterns, when appropriate, children need to be flexible in using it to accommodate 
verbs that do not conform that pattern; they need to figure out how a particular word 
differs from the other similar-meaning words.

Let us return to our discussion of the verbs that we call carrying/holding in 
Mandarin Chinese, for example. This language makes fine distinctions in terms of 
the manner in which the object is carried or held. However, importantly, the key 
distinction the English language makes (i.e., whether the agent is moving or not 
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while holding the object) is not relevant in Chinese. There are roughly 20 verbs that 
can be translated into English as “to hold” or “to carry,” and each of them, in 
Chinese, refers to a different event of a person holding/carrying an object in a dis-
tinct manner on a particular body part. When the object is held in the hand, different 
verbs are applied depending on the shape of the hand and the arm. Here, although 
certain objects typically appear with specific verbs (e.g., bowls with “ding” [carry 
on head], trays with “tuo” [carry on palm], children and backpacks with “bao” 
[carry in two arms]), the verbs can be used for other objects as long as the object can 
be held in the manner denoted by the verb. For example, carrying/holding an object 
on one’s head is denoted by ding (顶),1 while carrying/holding an object on one’s 
shoulder is kang (扛). Carrying/holding an object with two arms is denoted by bao 
(抱), but if the object is held with one arm at the side of the body, the action is called 
jia (夹). Several verbs like na (拿), ti (提), and lin (拎) refer to carrying/holding 
actions with one hand, and verb choice depends largely on the shape of the hand 
holding the object. However, these verbs are not necessarily all contrastive with 
clear gaps among them, nor are they configured with each separated evenly from 
each other. Instead, one part of the semantic space is densely covered by several 
close synonyms with overlapping boundaries, while other parts of the space are only 
sparsely covered with clear gaps with other verbs.

�What Do Children Need to Discover to Acquire Verbs 
in a Complex-Structured Lexical Domain?

How do Chinese-learning children acquire individual verbs within such a complex 
system? To be able to use words as adults do in their language community, children 
first need to discover the semantic features underlying the given semantic domain in 
the language. They also need to discover the relations among these words and learn 
where the boundaries are drawn between different word meanings. To understand 
how children discover and acquire extremely complex lexical systems, we need to 
understand how the representations of word meanings from the same domain start out.

For this purpose, Imai and colleagues examined how children learning Mandarin 
Chinese as their native language understand the meanings of Chinese carrying/hold-
ing verbs and how the learners’ meanings of these verbs evolve as they accumulate 
learning experiences (Saji et al., 2011). The authors employed production data as 
the index of learners’ knowledge of word meanings rather than comprehension data. 
In the field of vocabulary development, using comprehension data tends to be more 
common than production data (Ellis, 1995; Gleitman, 1990; Imai et  al., 1994; 
Markman, 1989). However, as discussed earlier, a deep understanding of word 

1 We had originally conducted separate analyses both for the “carrying” and “holding” matrices, 
but the results were very similar. Thus, we only report the results of the analysis using the matrix 
for the “carrying” events to avoid redundancy.
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meaning should be manifested by how precisely one can apply the word in various 
contexts, and this is difficult to assess using comprehension tasks.

Thirteen verbs in the domain were selected. These verbs are commonly used in 
everyday contexts and hence should be familiar to young children. Two video clips 
were prepared for each verb, one showing a carrying action with the actor moving 
with an object and the other showing a holding action with the actor holding an 
object while standing still. This manipulation was incorporated in the experimental 
design to see whether Chinese children would apply the same verb across the mov-
ing and nonmoving versions of the same action clips. In each trial, the participant 
was asked to name the action using a single verb. Trials were presented in a random 
order so that, if they understood the meaning of the verb, they should give the same 
verb across moving and nonmoving versions of the clips.

To understand the semantic structure of the domain in more detail, adult native 
speakers of Chinese (students of Beijing Normal University) were also tested on the 
production task with the same stimuli and procedure. Also tested were mothers of 
2-year-olds or 5-year-olds to see if they adjusted their verb use when speaking to 
their child. Each mother is to describe each clip with a single verb to the child sitting 
next to her. After that, the mother was asked to describe each stimulus to an adult 
experimenter. Additionally, to understand the complexity of the lexical structure 
more closely, university students who had not participated in the production experi-
ment were tested on a comprehension task. Every combination of the 13 target verbs 
and 13 stimuli was presented one at a time in random order, and the participants 
were asked to answer (with yes or no) whether the verb could be used to describe 
the given video clip.

�Findings from the “Carry” Verb Acquisition Study

The production data were analyzed first in light of the following two points: (1) 
How many verb types children and adults produced across the 26 videos in each age 
group; (2) how closely the pattern of children’s uses of verbs agreed with that of 
adults, and how patterns changed with age.

�How Many Verb Types Did Children Know?

Traditionally, the most commonly used measure for vocabulary growth is the num-
ber of word types children produce or understand, for example, as reported in the 
MacArthur Communicative Development Inventories (CDI) (Fenson et al., 1994). 
Saji et al. (2011) counted the number of verb types each individual produced across 
the 26 carrying/holding videos, which were ideally denoted by the 13 target verb 
types. The adults (undergraduates) on average produced 11.2 verb types. Importantly, 
the mothers of 2-year-olds and 5-year-olds did not differ from the undergraduates in 
the number of verbs they produced.

M. Imai and J. B. Childers



schrist3@swarthmore.edu

145

Children produced a smaller number of verb types (7.25, 6.25, and 8.57 for 3-, 
5-, and 7-year-olds, respectively), but within the three age groups, there was no 
developmental difference in the number of verb types children produced. The results 
suggest that adult native speakers of Chinese mostly used different verbs for each of 
the 13 carrying/holding actions. The 3- to 7-year-old children used fewer verbs than 
adults, but the number of verb types produced by the 3-, 5-, and 7-year-olds was 
approximately the same.

�Does Children’s Representation of the Lexical Domain Stay  
the Same Between 3 and 7?

Even if the number of verb types children produce spontaneously does not differ 
among the three age groups, how they use the verbs could still differ. To investigate 
this, Saji et al. (2011) compared the pattern of children’s verb use with that of adults’ 
following an algorithm used by Ameel, Malt, and Storms (2008). Here, we calcu-
lated the correlation between each age group and the undergraduate group, using the 
“carry” production matrix.2

First, whether children and adults produced the same verb for the 13 pairs of the 
video clips (i.e., one moving and the other standing still with the same manner of 
holding an object) was examined. The correlations were high for all four groups, 
although the agreement (or saying the same verb for the dynamic and static events) 
increased with age: 3-year-olds, r = 0.71; 5-year-olds, r = 0.85; 7-year-olds, r = 0.84; 
adults, r = 0.94. Thus, from early on, Chinese children understand that the distinc-
tion between “carrying” and “holding” (i.e., whether the event involves movement 
of the actor) is not relevant, and they applied the same verb consistently for both 
moving and nonmoving actions performed in the same manner on the same object; 
thus, the data were collapsed for further analyses.

Next, Fig. 7.1 shows the correlations between specific responses on each trial in 
each of the three age groups of children and adults. The correlation between 3-year-
olds and adults was low (r = 0.17). The degree of convergence with adult verb use 
increased linearly from age 3 to 7 years (i.e., 5-year-olds, r = 0.43; 7-year-olds, 
r = 0.58). Thus, even though the 3-, 5-, and 7-year-olds did not differ in the number 
of verbs they produced, they did differ in how they applied the verbs. With age, 
children gradually converged on the adult pattern of use. However, the degree of 
convergence was not very high even for the 7-year-olds (r = 0.58), considering the 
high correlations (0.84 in average) among the three adult groups (undergraduates, 
mothers of 2-year-olds, and mothers of 5-year-olds). The results suggest that it takes 
a long time for children to learn how to use these words in the same way as do adults 
but that they make steady strides toward adult-like representations of the verbs.

2 In Chinese, the distinction between a morpheme and a word is difficult to make. The 13 verbs 
were words consisting of a single morpheme. To make sure that the frequency count for each verb 
does not contain cases in which the same morpheme is a part of a different word (e.g., “ti” [dangle 
around the arm] used in “ti-gao” [to raise, to improve]), we went through the examples manually 
and excluded the latter cases from the counts.
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Did mothers adjust their input to young children? In other words, did they use 
only the most frequent verbs when talking to them? Recall that mothers of 2-year-
old and 5-year-old children were invited to name the same stimuli to their child to 
test this possibility. The correlations between the adult group (college students) and 
each of the two mother groups were higher than r  =  0.80, suggesting that even 
mothers of 2-year-olds used the same set of verbs as they did with the experimenter. 
These results suggest that the major difference in the patterns of verb use for adults 
and children cannot be attributed to the input from caretakers; instead, it must be 
attributed to internal factors at work in the children.

�Reliance of Object Similarity to Structure the Semantic Domain

In the next analysis, Saji et  al. (2011) examined the similarity structure of this 
semantic domain for each age group to see how the structure of the lexicon evolves 
with development. A similarity matrix was created separately for each age group 
and was submitted to multidimensional scaling (MDS) analyses. Figure 7.2 shows 
MDS solutions for each age group including the adult group. In the adult data, the 
13 verbs are separated from one another and configured into a circle, suggesting that 
different verbs were differentially applied to the 13 actions. In contrast, in 3-year-
old Chinese children’s plots (Fig. 7.2, upper left), the “na,” “jia,” and “peng” (捧) 
actions were completely overlapping, which indicates that they did not apply differ-
ent verbs to these events while they applied verbs differentially to the other actions 
to some extent. This tendency was also observed but to a decreased degree in the 
5- and 7-year-olds.

Fig. 7.1  Correlation between each of the three child groups and the adult group. Note: The value 
for the adult group (0.84) represents the average of correlation values between the undergraduate 
group and the two groups of mothers
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Why was the children’s pattern of verb use so different from that of adults? To 
learn word meanings, children have to detect which semantic features are critical for 
dividing up a given semantic domain. Perhaps the semantic features young children 
first rely on to organize the semantic domain are different from those used by adults 
(e.g., Bowerman, 2005; MacWhinney, 1987; Schaefer, 1979). As already discussed, 
the critical semantic features that differentiate carrying/holding verbs in Chinese 
concern specific body parts and the manner in which the actor supports the object 
(e.g., on the head, on the back, or on the shoulder). However, young children may 
not yet be aware that manner of support is more important than are other features 
involved in the events, such as the objects. In the novel verb generalization studies 
reviewed earlier in this chapter (Imai et al., 2005, 2008), 3-year-olds had difficulty 
segregating objects from the action but were helped when there was higher object 
similarity between the source and target events; in that case, children were able to 

Fig. 7.2  MDS solution for the production data of native speakers of Chinese: Chinese 3-year-old 
children (upper left); Chinese 5-year-old children (upper right); Chinese 7-year-old children (lower 
left); Native speakers of Chinese (lower right)
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understand the abstract “verbal core” of the verb meaning. We also described other 
studies of progressive alignment showing that having more similar comparisons 
helps children learn how to compare, and object similarity across examples is one 
form of similarity that would fit. It thus seems reasonable that young children could 
first organize a semantic domain for a verb around the type of the objects used in the 
verbs in the carrying/holding action.

To examine the possibility that children may use types of objects to organize 
their verb meanings, Saji et al. further conducted INDSCAL (INDividual SCALing 
MDS), a version of the MDS technique developed for evaluating individual/group 
differences in a multidimensional space common across groups (Carroll & Chang, 
1970). While MDS can provide a visual representation of patterns of similarity or 
distance by detecting underlying dimensions from all of the input groups, INDSCAL 
allows us to capture the weights each input group assigned to the dimensions 
detected from all input groups. The four correlation matrices from the different age 
groups calculated in Analysis 2 were fed into INDSCAL as the input data. INDSCAL 
provided two kinds of output: first, it identified the dimensions underlying the verb 
production patterns, along which all the age groups categorized the videos (Common 
Space), and second, it identified the weights each group placed on each of the com-
mon dimensions when they named an event (Individual Space).

Figure 7.3a and b show the Common Space; the location of each event point was 
calculated using the data from all four age groups. Each point thus represents 13 
videos of carrying, and distances between the points reflect the similarity among the 
videos based on the naming pattern produced (Fig.  7.3a for Dimension 1 × 
Dimension 2, Fig. 7.3b for Dimension 1 × Dimension 3). In the Common Space, if 
participants tended to apply the same verb to any two given videos, the distance 
between the two videos is small, and each of the dimensions extracted reflects a 
criterion by which the naming of the videos is distinguished. The Individual Space 
shows how the different age groups weighted the semantic features represented by 
each dimension (Fig. 7.4a and b).

For the configurations along the three dimensions, the videos plotted in the posi-
tive direction on Dimension 1 include carry actions where the object was supported 
by body parts other than hands (e.g., “ding” [carry on head], “kua” [hang on the 
shoulder], and “bei” [carry on back]), whereas the videos plotted in the negative 
direction were generally carrying actions where the object was carried with the hand 
(e.g., “lin” [dangle with one hand], “ti” [dangle around the arm], “na” [carry with 
one hand]). Thus, we can interpret Dimension 1 as representing the semantic feature 
distinguishing events via the manner of holding for the object.

The interpretation of Dimension 2 is less transparent, but it appears to distinguish 
the “bao” (carry in two arms) event (hugging a stuffed cat in two arms) from all 
other events. Given that the stuffed animal being carried in the “bao” event stands 
out from the other objects for children, Dimension 2 may be related to “salience of 
the object.” Dimension 3 could be interpreted as the dimension differentiating the 
events according to “objects to be held.” The events plotted along the positive direc-
tion of Dimension 3 included the “bei” [carry on back] events with a rucksack, “lin” 
[dangle with one hand] with a plastic shopping bag, “ti” [dangle around arm] with 
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a tote bag, “kua” [hang on the shoulder] with a shoulder bag, and “jia” [carry under 
one arm], with a square business bag—where all the objects were bags of some 
kind. In contrast, the objects in the videos plotted along the negative direction were 
“bowls”—the “duan” [carry with two hands with caution] event with a glass bowl 
with water and the “ding” [carry on head] event with a wooden bowl. In summary, 

a

Fig. 7.3  A Common Space extracted in a INDSCAL model: (a) Dimension 1 × Dimension 2; (b) 
Dimension 1 × Dimension 3. Each plot represents 13 videos, and distances between plots represent 
the similarity of the verb production pattern

b
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the body support and the manner of carrying and holding showed up as Dimension 
1, and the object properties are represented in Dimensions 2 and 3.

How were the three dimensions weighted by the four different age groups? 
Figure 7.4a and b show the weight plots for the four groups on the three dimensions 
in Common Space. As expected, there were major differences between children and 
adults in the weights for each dimension. While Dimension 1 (salience of body parts) 
was more important for adults than Dimension 2 (salience of object) or Dimension 3 

(Object to be held)

(Salience of object)
a

Fig. 7.4  An Individual Space extracted in an INDSCAL model: (a) Dimension 1 × Dimension 2; 
(b) Dimension 1 × Dimension 3

(Object to be held)

b
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(object properties), Dimension 2 and Dimension 3 were more prominent than 
Dimension 1 for the three child groups.

Summarizing the results of the two MDS analyses (MDS for each age group and 
INDSCAL), the following developmental process may take place in Chinese learn-
ing children. They first form three semantic islands: an island around na (actions 
using one hand), bei (actions in which objects were supported by the back), and bao 
(actions in which objects were held by two arms), perhaps by perceptual saliency of 
body parts with which the object is held. They suggest children noticed that differ-
ent types of objects were used for each type of action such that smallish objects that 
can be held up by one hand tended to appear with the verb na, bigger objects (often 
small animals or children) with bao, and backpacks with bei. As children observe a 
new verb used to refer to a “similar” action with a similar object, they tentatively 
locate it in one of the three islands, and differentiation of the verbs gradually takes 
place within each cluster (perhaps using attention to implicit contrast, discussed in 
the prior section).

�Factors Determining the Ease of Learning

Saji et al. (2011) further analyzed which factors affect the ease of learning. Here, two 
criteria for determining the ease (or difficulty) of learning were considered: (1) how 
frequently a given word is used by children and (2) how closely children can apply 
the verb to videos that fit the range used by adults. In the literature of lexical develop-
ment, “early learned words” are usually considered “easy words to learn.” However, 
examining which verbs are used in an adult-like way from an early age, and which 
ones are used differently, may provide insight into understanding the factors that 
affect the acquisition of verb meanings. For this purpose, Saji et al. adopted entropy 
(H) as a quantitative index to represent how children and adults differentially use 
verbs. Entropy has been used as a measure for showing the proximity for a thermo-
dynamic system to equilibrium, but it is now widely used in information theory and 
statistics (Mori & Yoshida, 1990). The notion of entropy in statistics is often used in 
descriptive statistics as an index to represent the degree of dispersion of responses 
for a categorical variable. If the responses are concentrated in one or a small number 
of response categories, the entropy value becomes low; if they are widely dispersed 
across different response categories, the value becomes high (see Saji et al. for the 
formula). In the current context, if the range of application of the verb is restricted to 
one or a small number of videos, the entropy value will be low, whereas if partici-
pants produce a single verb for a range of videos, the entropy value will be high. Low 
entropy values for the adults could suggest that for a given action, they used the verb 
that we had originally intended (e.g., used the verb “ding” [carry on head] for the 
video of what we intended to be a “ding” action) most of the time; in this case, the 
degree of dispersion of the verb use would be small. In contrast, if children tended to 
apply each verb to a broader range of videos, the entropy value would be high.

Two important trends emerged from entropy analyses. First, overall, young 
children tended to use various verbs for a given action, while adults tended to use 
a  specific verb for a specific event with high agreement. However, some verbs  
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(e.g., “ding” [carry on head]) converged on the adult pattern almost from the begin-
ning. Children used “ding” only for the action adults also described with “ding,” 
without applying other verbs such as “na” [carry with one hand] to this action, nor 
did they overuse “ding” for other hold/carry actions in the domain. This suggests 
that, in a semantic domain, if words are first overextended and then gradually 
restricted with development, this process may happen more quickly for some verbs 
than others. (Of course, the alternative is that verbs are used conservatively at first 
(e.g., see Tomasello, 2000, which could also explain these results)). As discussed in 
the previous section, “na” [carry with one hand], “bao” [carry with two arms], and 
“bei” [carry on the back] form the first three semantic islands and are considered as 
“early learned verbs” in previous studies (e.g., Hao, Shu, Xing, & Li, 2008). 
Interestingly, we found that the words showing the higher entropies were the ones 
children used broadly and more frequently than other words. The verb “ding” [carry 
on the head] had the lowest entropy, meaning that it was not confused with other 
verbs. This verb seems to differ from “na,” “bei,” and “bao” in that it has no close 
neighbors that share boundaries with it. Perhaps the convergence to the range of 
adults’ use was influenced by the presence of similar-meaning words sharing bound-
aries in the same semantic domain. If a word does not have close neighbors with 
overlapping boundaries, the degree of convergence may be high even from very 
early stages of lexical development. In contrast, if a word has overlapping boundar-
ies with many other words, the degree of convergence between children’s meaning 
and adults’ meaning may be low at early ages, and it may take a long time for chil-
dren to arrive at a meaning equivalent to that possessed by adults because then chil-
dren must delineate many boundaries with many similar-meaning words.

Second, “na” and “ding” also differ greatly in the range of instances adults accept 
as referents. In the production task, adult Chinese speakers used “na” for the video 
we assumed to be the “na” action and did not use it for other actions as they pre-
ferred to use verbs that specifically designated those actions. However, the compre-
hension data indicated that adults would also accept actions denoted by other 
hand-holding actions such as “ti” [dangle around the arm] and “lin” [dangle with 
one hand] as referents of “na,” although to a lesser degree. The reverse direction was 
not observed: Adults did not judge the verbs “ti” or “lin” to be acceptable to refer to 
the “na” video. Thus, “na” has a broader range of applicability than the neighboring 
verbs “lin” and “ti.” Importantly, children used “na” not only for the actions adults 
accepted as referents of this verb but also for those adults did not accept. The adult 
comprehension data revealed that “bei” [carry on back] and “bao” also cover broader 
ranges than other verbs. It may be the case that children overextend a word that cov-
ers the broadest range of referents in the semantic domain, which might result in late 
convergence with adults’ meanings, and this is why we see the three islands around 
“na,” “bei,” and “bao.”

Additionally, Saji et al. used regression analyses to examine whether two seman-
tic properties of the verbs—the degree of boundary overlap with neighboring words 
(boundary overlap) and the range to which the verb is applied (verb coverage)—
affect how “easily” children learn verbs. To quantify these values, the data from the 
adult comprehension task were used.
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To represent the degree of boundary overlap, the entropy value was calculated 
for each action. If many verbs are accepted for a given action, it means that the 
video originally created to represent one verb can be described using other verbs. 
Hence, the boundary of the verb with other neighboring verbs is somewhat continu-
ous, and the verb has a high degree of boundary overlap with other verbs. On the 
other hand, if only one verb is accepted for the action across different adult partici-
pants, there is little boundary overlap with other verbs. To quantitatively represent 
the second predictor, verb coverage, the entropy value was obtained for each verb. 
Here, if a given verb was accepted for many different actions—that is, if the verb 
covers a wide range of action instances—the entropy for the verb will be high. In 
addition, the influence of word frequency in the model was examined, as it has been 
considered as an important predictor in accounting for how early the word enters 
children’s vocabulary (e.g., Li, Zhao, & MacWhinney, 2007). 

The results of the regression analyses revealed that the three factors (i.e., fre-
quency, breadth of coverage, and boundary overlap) contributed differently in 
accounting for the “ease of learning” for the two different definitions of “ease” (i.e., 
frequency of use by children and convergence with the adult pattern; see Saji et al. 
2011 for details). There was also an interesting developmental trend in the relative 
weights of the three factors. First, using frequency of use by children as the depen-
dent variable, (in which the ease of learning for the 13 verbs was indexed by how 
willingly children used these verbs), the word frequency in the adult corpus made 
the strongest contribution for all three age groups (3 years: β = 0.65, t = 3.5, p < 0.01; 
5 years: β = 0.60, t = 2.8, p < 0.05; 7 years: β = 0.59, t = 3.0, p < 0.05), suggesting 
that the verbs young children tend to produce frequently are also the ones that they 
hear most frequently. The degree of verb coverage did not make a significant unique 
contribution to the model (3 years: β = 0.42, t = 2.0, n.s.; 5 years: β = 0.41, t = 1.6, 
n.s.; 7 years: β = 0.45, t = 2.0, n.s.). On the other hand, the degree of boundary over-
lap contributed to the model in 7-year-olds but not in younger children (3 years: β = 
−0.27, t = −1.5, n.s.; 5 years: β = −0.39, t = −1.9, n.s.; 7 years: β = −0.49, t = −2.6, 
p < 0.05). These results suggest that older children tend to produce words with dis-
tinct boundaries with neighboring verbs.

For the models using the degree of convergence with adults’ use of the verbs as 
the dependent variable, the degree of boundary overlap contributed most strongly to 
the model. The β value for the degree of boundary overlap was significant for all ages 
(3 years: β = −0.73, t = −0.2.9, p < 0.05; 5 years: β = −0.81, t = −3.1, p < 0.05; 7 
years: β = −0.86, t = −3.8, p < 0.01). The negative direction of the β values indicates 
that the higher the degree of boundary overlap, the lower the degree of convergence 
in children’s use of verbs with that of adults. In this case, for none of the three age 
groups did verb coverage or word frequency make a significant contribution.

The results of the regression analyses thus suggest that different factors underlie 
the two different processes of word learning. At early stages of word learning, fast 
word-world mapping is very important. There, the input frequency plays a more 
prominent role than do semantic properties of the target word such as boundary 
overlap and breadth of meaning: Children produce the words they hear most often. 
However, for the later process of word learning, the degree of boundary overlap 
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with other verbs is more strongly related to the degree of convergence with adults’ 
use: The more the word has neighboring words with overlapping boundaries, the 
longer it takes for children to attain adultlike meanings.

�Summary and Implications: Object Saliency, Similarity, 
and Contrast as Driving Forces for Structuring the Verb Lexicon

The study presented in this section clearly shows that verb meaning acquisition in a 
full sense is a long, protracted process. Children cannot acquire adultlike meanings 
of individual words by fast-mapping as the acquisition of a word’s  full meaning 
requires understanding how a word is different from other words surrounding it. To 
do so however, children first need to know what semantic domain the word belongs 
to, what words exist in the domain, and how these words divide the domain. In 
short, to acquire the full meaning of a word, children need to acquire the representa-
tion of the semantic domain as a whole.

How is the representation of the semantic domain structured, and how does it 
become more adultlike? The result of the study by Saji et al. (2011) suggests that 
children learning verbs for “carry” first organize the domain by salience of body 
parts with which the object is held, and by similarity of the objects, such that chil-
dren apply the same verb for actions involving similar objects. Thus, object saliency 
and object similarity scaffold children’s construction of a lexical system as they 
fast-map verbs to event scenes. However, as they add new verbs in the lexicon of the 
given semantic domain, children need to place the newly learned verb in relation to 
the words that already exist in the lexicon. In so doing, they may rely on object simi-
larity at first, but they need to compare the new verb with the existing ones, align 
them, and find commonalities and differences between them (e.g., Childers et al., 
2016; Childers & Paik, 2009; Gentner & Namy, 2006).

�Conclusion

In this chapter, we have outlined a bootstrapping process that children could use to 
form initial verb meanings from sound and object similarity information available to 
them (most useful if they are deducing meaning from a single event). We then dis-
cussed how children could discover and come to rely on specific linguistic features 
in their language and then how they could create a lexical system of verb meanings 
by comparing and contrasting verbs with each other. Children could use information 
they glean across multiple events for all three of these problems they face, though 
we have focused on how they may use comparison information particularly for the 
most complex problems in verb learning. One central mechanism they could use 
when comparing events is structural alignment, or the ability to compare events by 
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aligning elements across events with each other. We have described experimental 
evidence showing children’s verb learning is consistent with structural alignment 
theory. In comparing structural alignment to statistical learning, structural align-
ment is a more specific account of the mental processing children may use when 
comparing events, whereas in statistical learning, children would attend to any sta-
tistical regularity in the input (e.g., see Chaps. 2 and 4, for discussions of statistical 
learning theory). It is possible that infants start with statistical learning mechanisms 
and apply those to early stages of verb learning and then use the more specific struc-
tural processing as they build the lexicon (see Childers, Bottera, & Howard (2017) 
for a further comparison of these theories). It is also possible that children use syn-
tactic cues to build their understanding of verb meaning (e.g., Gleitman, 1990; 
Naigles, 1990; Yuan & Fisher, 2009), though we see these cues as interacting with 
statistical learning or comparison processes in verb learning (see Fisher, 2002; Scott 
& Fisher, 2009) as opposed to explaining the whole of verb learning on their own.

Verb learning is a difficult but exciting area of research, which is progressing. By 
considering what mechanisms children have available to solve these important verb 
problems in development, we encourage other researchers to continue to investigate 
more than children’s initial verb meanings but how they go beyond those meanings 
to become productive speakers of a language.
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Chapter 8
Multiple Examples Support Children’s 
Word Learning: The Roles of Aggregation, 
Decontextualization, and Memory 
Dynamics

Catherine Sandhofer and Christina Schonberg

Abstract  Young children discover the meaning of words from hearing words used 
across time and across contexts. Children learn to label not only the specific 
instances they have experienced, but they also learn the meaning of words appropri-
ately to new instances. Moreover, children remember these word-referent pairs 
across a period of time, such that they are able to recall the appropriate word after 
delays of days or weeks. In this chapter, we address these aspects of word learning – 
how do children generalize instances to new situations and remember word-referent 
pairs across time? In doing so, we discuss statistical learning as a mechanism for 
word learning with a specific focus on the processes of aggregation and abstraction. 
Second, we discuss how multiple examples dynamically support the retention of 
word-referent pairs.

Young children discover the meaning of words from hearing words used across time 
and across contexts. Children learn to label not only the specific instances they have 
experienced (e.g., using “ball” to label their own soft red ball), but children also 
generalize the meaning of words appropriately to new instances (e.g., pairing the 
label “ball” with unfamiliar balls). Moreover, children remember these word-
referent pairs across a period of time, such that they are able to recall the appropriate 
word after delays of days or weeks. This chapter focuses on these aspects of word 
learning – how do children generalize instances to new situations and remember 
word-referent pairs across time?

Although children are capable of one-trial mapping of words to referents (e.g., 
Heibeck & Markman, 1987), children typically experience many instances of a 
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word before it makes it into their early lexicons. For example, Hart and Risley 
(1995) estimate that children hear between 300 and 400 utterances an hour. And 
Roy documented that his son heard approximately 8 million words from the ages of 
9–24 months, and 17,529 instances of the word “water” before his first production 
of the word (Roy, Frank, DeCamp, Miller, & Roy, 2015). Thus, young children’s 
language environments are chock-full of multiple repetitions of words.

Hearing words multiple times appears to benefit learning, such that there is a 
strong relationship between the frequency of words in language input to children 
and children’s vocabulary acquisition (Hoff & Naigles, 2002). Children with the 
largest vocabularies have parents who provide the most language input (Hart & 
Risley, 1995; Hoff, 2003; Hurtado, Marchman, & Fernald, 2008; Huttenlocher, 
Haight, Bryk, Seltzer, & Lyons, 1991), and the words that are most frequent in a 
parent’s speech to a child tend to be the words that children produce earliest (Hart, 
1991; Moerk, 1980) and the words that children comprehend most efficiently 
(Hurtado et al., 2008).

One reason that multiple presentations benefit word acquisition is that, across 
presentations, the accompanying but nonessential features are likely to vary. Thus, 
each presentation provides new information about word meaning to some degree 
and, in doing so, aids in word generalization. Frequent presentations also benefit 
word acquisition because multiple presentations, particularly when experienced 
across time, provide strong support for remembering word-referent pairs. In this 
chapter, we first discuss statistical learning (also see Johnson, this volume, and 
Theissen, this volume) as a mechanism for word learning with a specific focus on 
the processes of aggregation and abstraction. Second, we discuss findings from the 
memory literature (see Theissen, this volume, for a similar section) that point to 
mechanisms for how children may remember word-referent pairs across time.

�Statistical Learning

Statistical learning is a general learning mechanism that involves extracting statisti-
cal regularities in the environment – typically low-level perceptual co-occurrences. 
Through sensitivity to these low-level co-occurrence patterns in the environment, 
higher-level structure emerges. Statistical learning has been demonstrated across a 
broad range of learning tasks including learning distributions of shapes presented in 
temporal streams and spatial arrays (Tummeltshammer, Amso, French, & Kirkham, 
2017), using visual feature co-occurrences to form representations of object integ-
rity (Wu, Gopnik, Richardson, & Kirkham, 2011), and linking statistical distribu-
tions of sound sequences to meaning (Graf Estes, Evans, Alibali, & Saffran, 2007).

At its core, statistical learning relies on the existence of statistical regularities 
within the world. Statistical learning is an especially good fit for understanding how 
children learn words because language input includes cues to the statistical regular-
ity of language structure at multiple levels. For example, in a landmark study by 
Saffran, Aslin, and Newport (1996), infants were presented with 2  minutes of a 
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continuous stream of nonsense syllables in which the frequency of one syllable fol-
lowing the next (i.e., the transitional probabilities) indicated the word boundaries. 
Infants responded differentially to syllable combinations that spanned word bound-
aries versus syllable combinations that did not span the word boundaries. These 
results demonstrate that children are sensitive to a set of regularities that may aid in 
parsing speech into word units, and they are able to extract these statistical proba-
bilities through even a minimal amount of input (i.e., 2 minutes of input).

Recent work exemplifying how statistical learning might solve referential ambi-
guity about how words map onto meaning comes from the groundbreaking work of 
Linda Smith, Chen Yu, and colleagues on cross-situational word-referent learning 
(Yu & Smith, 2007, 2011; Yurovsky, Yu, & Smith, 2013). Because words’ meanings 
are reflected in the statistics of their use, sensitivity to co-occurrence information 
can lead to discovering word meaning because across instances, there are co-
occurrence regularities between words and referents. A growing body of work 
shows that adults, children, and infants can use co-occurrence information to map 
words to their meanings (see Scott & Fisher (2012); Suanda, Mugwanya, & Namy 
(2014) for examples). In these studies, participants learn words under situations of 
referential ambiguity. In a typical experiment, pictures of two unknown objects are 
presented to subjects and two unfamiliar words are uttered. For example, the learner 
might hear the words “natu” and “tikka” while viewing object 1 and object 2. With 
a single presentation, there is uncertainty as to which object “natu” refers to and 
which object “tikka” refers to. However, each word and its associated object refer-
ent reappear in subsequent presentations with another objects and word pair: on 
another trial, a child may hear the words “natu” and “wug” while viewing object 1 
and object 3. Across presentations, the learner can determine the word’s meaning by 
selecting from those meanings that reliably reoccur across situations and pair the 
word “natu” with object 1. In studies of this kind, infants, children, and adults are 
able to successfully map words onto referents. Thus, cross-situational learning pro-
vides a compelling model for how co-occurrences can create word learning.

Although infants are able to connect words to meanings in simple cross-
situational experiments, the ability to map words to referents becomes disrupted 
with increasing time intervals between naming events and with greater visual com-
plexity (Smith, Jayaraman, Clerkin, & Yu, 2018; Smith, Suanda, & Yu, 2014; Smith 
& Yu, 2013; Vlach & Johnson, 2013). In one study, Vlach and Johnson (2013) pre-
sented 16- and 20-month-olds with a cross-situational task in which the timing 
between subsequent presentations of the word-referent pairs varied. Half of the 
pairings were presented in immediate succession, and half were presented nonadja-
cently with five other trials separating each presentation of the word-referent pair. 
Both the 16- and 20-month-old children learned the word-referent pairs that were 
presented in immediate succession. However, only the 20-month-olds were able to 
learn the nonadjacent word-referent pairings. This suggests that young infants may 
encounter more difficulty aggregating information when presentations of words and 
referents reoccur after a long delay. Because real-world naming instances do not 
always occur in close temporal proximity, aggregating instances experienced over 
larger time periods may require extra support to promote memory and generalization. 
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Below, we discuss context and timing – two omnipresent environmental factors that 
have a history of demonstrated effects on memory performance – and how these 
factors may aid in aggregating temporally distant instances.

�Multiple Examples Provide Support for Aggregation

Many instances of categories in the real world share similar contexts as well as simi-
larity in features, properties, and functions. For example, consider the category of 
“toothbrush” and all of the different encounters with toothbrushes that a child expe-
riences across a swath of time. Across these different instances, there are a lot of 
similarities. The different toothbrushes share similar features: they have bristles 
made of nylon and handles made of plastic. They are roughly the same shape and 
the same size. Moreover, from day to day, the toothbrushes also share a lot of con-
textual similarity: the toothbrushes are kept in the bathroom, they are talked about 
and used right before bedtime, and they are often proximally and temporally linked 
with toothpaste.

This background context is in no way intrinsic to being a member of the cate-
gory of toothbrush. Indeed, a toothbrush is still a toothbrush when it appears in 
completely different contexts  – such as on an archaeological dig. What matters 
from a statistical learning perspective, however, is the pattern of co-occurrence. 
The instances of toothbrush co-occur with multiple aspects of the background con-
text: the bathroom, the toothpaste, the time of day, etc. Thus, children’s initial cat-
egory of “toothbrush” might include examples from all the toothbrushes they have 
experience with (e.g., their own purple toothbrush and their sister’s pink glittery 
toothbrush) but may also be inseparably connected to the contexts in which in 
toothbrushes are experienced (e.g. brushing one’s teeth at bedtime by the bath-
room sink).

There is reason to expect that shared context might be helpful for learning and 
remembering categories. A large body of research has shown that the context in 
which something is learned has strong effects on memory encoding and retrieval 
(e.g., Butler & Rovee-Collier, 1989; Godden & Baddeley, 1975; Rovee-Collier & 
Dufault, 1991; Smith, Glenberg, & Bjork, 1978; Tulving, 1972). In a typical context 
experiment, learning conditions A and B differ on some dimension, and retrieval 
conditions A′ and B′ are similar on this dimension to encoding conditions A and B, 
respectively. The robust finding is that performance is better in conditions in which 
encoding and retrieval conditions match (A–A′ and B–B′) than when encoding and 
retrieval conditions do not match (A–B′ and B–A′). That is, maximizing the similar-
ity of the encoding and retrieval contexts benefits retention. Significant context 
effects have been demonstrated with adult and infant learners in this type of encod-
ing/retrieval paradigm (Butler & Rovee-Collier, 1989; Rovee-Collier & Dufault, 
1991; Smith et al., 1978).

Learners are sensitive to background context, as demonstrated in studies show-
ing that the same object is interpreted differently depending on the contextual back-
ground (Light & Carter-Sobell, 1970; Perry, Samuelson, & Burdinie, 2013; 
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Samuelson & Smith, 1998). Even young infants are capable of forming categories 
on the basis of shared context and form categories such as “objects found in the 
kitchen” (Mandler, Fivush, & Reznick, 1987; Reznick, 2000). Further, children and 
adults routinely use linguistic (e.g., Fisher, Klingler, & Song, 2006; Landau, Smith, 
& Jones, 1992) and discourse context (e.g., Akhtar, 2004) to interpret meaning. 
Thus, it is well established that children are sensitive to and make use of contextual 
cues in categorization.

Shared context may also support category formation during development. 
Initially shared context may do some of the work of categorization by aiding in 
aggregation. Because context is associated with objects in memory, contextual cues 
can aid in aggregating discrete instances together in memory.

Indeed, this seems to be the case. Vlach and Sandhofer (2011) experimentally 
tested the role of context in a novel word learning task. To control for the amount of 
experience children had with learning a particular category, we presented children 
with an artificial word learning task, known as the novel noun generalization task. 
In this task, children are presented with a novel object, and it is named with a novel 
pseudoword. The objects within each category matched each other by shape, but 
they differed in color and texture. Children were then tested on whether they could 
extend the novel word to similar objects.

We purposely chose a background context that had no relevant meaning to the 
objects; essentially, it was a large cloth napkin that was immaterial to any aspects 
of the objects. Because we did not want to draw special attention to the context, 
each object or set of objects was wrapped in cloth. The cloth was turned inside out 
and kept shut using a clip, creating the appearance of a bag. When the bag was 
opened during each presentation, the patterned cloth was underneath the object and, 
as a result, was the visual background. Using this procedure, the context changes 
appeared to be incidental rather than deliberately made by the experimenter.

Figure 8.1 shows the three conditions in the study. In all three conditions, chil-
dren were presented with three different instances of an object category, one right 
after the other. During each presentation, the object was labeled two or three times 
(e.g., “Look at the dax! See the dax!”). Children were then shown an unlabeled 
distractor object (e.g., “Wow look at this!”). Finally, children were tested by pre-
senting four objects to the child simultaneously and asking the child to select an 
object from the same category (e.g., “Give me the dax”). What differed between the 
three conditions was the amount of contextual support between training and testing. 
In the match condition, the training trials and testing context were all the same. In 
the mismatch condition, all three training context trials had the same colored and 
patterned cloths, but the testing context differed from that of the training trials. 
Finally, in the multiple condition, children saw a new context for every 
presentation.

Three age groups participated: 2.5–3 years, 3–4 years, and 4–5 years of age. The 
youngest children were relatively new word learners, and the oldest children had 
much more experience with word learning and categorization. Despite the fact that 
all of the children had the same level of prior experience with the novel objects (i.e., 
no prior experience), we found clear age-related changes in performance across the 
three age groups.
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Figure 8.2 shows the number of category matches children made in each condi-
tion and each age group. When the training context and testing context matched, 
that is, the context supported aggregation between the training items and the testing 
items, children in all three age groups selected a large number of correct responses. 
However, when the training and testing contexts mismatched or varied, the youngest 
age group’s (2.5–3 years) performance was significantly lower than when the train-
ing and testing contexts matched. Thus, 2.5- to 3-year-olds seemed to be greatly 
affected by context manipulation; when they were asked to generalize a category 
label in a new context, their performance dropped to levels that were no different 
from chance. By 4 years of age, the context manipulations appeared to have lit-
tle effect.

Goldenberg and Sandhofer (2013) suggested that difficulty with the varied con-
dition is due to a lack of support for the aggregation of different instances in mem-
ory. Successful category learning requires aggregating multiple object-label pairs 
experienced across time. Shared context may aid the youngest children in forming 
a category across different instances. Although a shared label may encourage cat-
egorization, the more systematically instances occur within a particular context, the 
more strongly these instances should be associated together. This is in part due to 
the compounding effects of multiple correlated cues. It is well established that 
when cues compound or correlate, response to the compound is greater than the 
response to a single cue (Kehoe, 1986; Rescorla & Coldwell, 1995). Support for 
aggregation might be particularly important when categories contain variation 
across different instances. For example, spoons can vary in color, size, and mate-
rial. By aggregating instances of the experienced objects together, the relevant 

Fig. 8.1  Examples of stimuli in the match, mismatch, and multiple conditions in Vlach and 
Sandhofer (2011)
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properties become stronger and the irrelevant properties become weaker. In this 
way, aggregating across multiple instances highlights the similarities between dif-
ferent objects from the same category (Gentner & Namy, 1999; also see Tversky 
(1977)). Because the aggregation of memories for specific instances is more likely 
when there is a large amount of similarity, categories with some degree of variation 
may be the categories that most benefit from support for aggregation.

Studies with young children indicate that providing multiple redundant corre-
lated cues, cues that point to higher-level structure, leads to greater learning than 
does providing a single cue. In these studies, children show stronger performance 
when presented with correlated cues that mutually reinforce each other than when 
presented with a single cue (e.g., Dueker & Needham, 2005; Thiessen & Saffran, 
2003; Yoshida & Smith, 2005). For example, in Yoshida and Smith’s (2005) study, 
when perceptual cues systematically co-occurred with linguistic categories, 
Japanese-speaking children showed increased performance on generalization tasks 
in which children hear an unknown exemplar labeled and are asked to select another 
object that shares that same label. Categorization studies indicate that there are an 
abundance of correlated cues available for children to take advantage of (Bhatt, 
Wilk, Hill, & Rovee-Collier, 2004; Madole, Oakes, & Cohen, 1993; Rakison, 2004; 
Sahni, Seidenberg, & Saffran, 2010; Younger, 2008).

In real-world learning situations, cues indicative of statistical regularity do not 
just occur in isolation – there is often redundancy in cues that indicate higher-level 
structure. For example, cues indicating the boundaries between words include stress 
patterns, transitional probabilities, and phonotactic constraints (Johnson & Jusczyk, 
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2001; Romberg & Saffran, 2010; Saffran & Kirkham, 2018). Increasing the number 
of cues increases the likelihood that children will learn. Sloutsky and Robinson 
(2013) demonstrated this in a shape rule learning study that tested the effects of 
redundant correlated cues. In this study, 14- to 22-month-old children learned either 
shape or texture in two distinct contexts that varied in the number of contextual cues 
(from one to four). Children showed the most learning on the contexts in which they 
had more correlated cues. As the number of available correlated cues decreased, 
learning decreased as well.

Thus, as a whole, correlated cues can be a powerful aid to learning and might be 
especially useful early in the learning process or in more difficult learning situa-
tions. Nonadjacent dependencies are one such example of difficult learning. 
Learning is difficult when information is distributed across nonadjacent presenta-
tions. Correlated cues can facilitate this type of nonadjacent learning (Gómez & 
Lakusta, 2004; Newport & Aslin, 2004; Romberg & Saffran, 2010). In Vlach and 
Sandhofer’s (2011) word learning task, the category instances varied across presen-
tations. To succeed, children needed to aggregate the features that were similar 
across presentations (i.e., shape). To do so, children were either provided with a 
single cue to aggregate instances (i.e., the label was the same across instances) or 
they were provided with two correlated cues (e.g., the label and the background 
context were the same across instances). Novice word learners may require more 
support than a single aggregative cue. In real-world learning events, this may be 
especially so because there can be large intervals of time between naming events; 
correlated contextual cues may be especially beneficial for aggregating across non-
adjacent instances.

�Multiple Examples Provide Support for Abstraction 
and Decontextualization

The best support for aggregation of category members might include highly similar 
objects presented in highly similar contexts. However, these types of presentations 
might hinder category abstraction and decontextualization. Much research has 
described the progression from context-bound to more abstract categories. As a 
whole, children appear to begin learning words with local mappings between 
context-bound categories and gradually build more abstract categories. This idea 
that children’s words may initially be context-bound has been raised by a number 
of researchers (e.g., Hoff, 2013). Barrett (1986), for example, reported that his son 
initially used the word “duck” in a very specific context: only to a rubber duck 
while knocking the duck off the edge of the bathtub. However, he did not use the 
word “duck” when the toy duck was played with in other contexts. Similarly, 
Bloom (1973) reported that her daughter only produced “car” in response to view-
ing cars from her apartment window, but not for cars viewed up close or for pictures 
of cars in books.
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The fact that children’s early words show context dependency is not surprising. 
It is well documented that memory has context-dependent properties. The contex-
tual effect is so strong that experiencing an object repeatedly in the same context 
can lead to context dependence, in which a learner fails to retrieve a memory outside 
the context in which it was learned. This concurs with research suggesting that chil-
dren’s early categories are concrete and context-bound (Huttenlocher, Smiley, & 
Charney, 1983; Mix, 2002; Mix & Sandhofer, 2007; Quinn, Cummins, Kase, 
Martin, & Weissman, 1996; Roberts, 1983; Rovee-Collier & Fagen, 1981; 
Tomasello, 1992, 2000) and studies demonstrating that even though children may 
seem to categorize objects in one task context, such as visually exploring objects, 
they may fail to do so in other contexts (e.g., Oakes & Madole, 2000; Younger & 
Furrer, 2003).

Variability in context across category presentations can protect against context 
dependency. In Vlach and Sandhofer’s (2011) study, 2.5- and 3-year-old children 
who learned the category names in a single context (supporting aggregation) did 
significantly worse at extending the label to a new category member when it was 
presented in a different context (i.e., mismatch condition) than when it was pre-
sented in the same context that it had been learned (i.e., match condition). That is, 
the children exhibited context-dependent learning.

One possibility for this context dependency is that the object name and referent 
are strongly associated with the context in which it is learned. Such context depen-
dency can be overcome by learning in varied contexts (Jones, Pascalis, Eacott, & 
Herbert, 2011; Smith et al., 1978). To test this, Goldenberg and Sandhofer (2013) 
designed a study in which children were either provided with support for aggrega-
tion, support for decontextualization, or support for both aggregation and decontex-
tualization. In this study, 24-month-old children were taught labels for novel object 
categories in one type of contextual condition and were tested for category general-
ization in a new context.

During the learning phase of the study, children saw five category instances in 
which the objects within each category matched each other by shape but differed in 
color and texture. The objects were presented one at a time, and each was presented 
on its own patterned and colored cloth (the background context). In the aggregation 
support condition, all five of the colored cloths were identical. Thus, children 
received extra support for aggregation through the background cloth-correlated cue. 
In the decontextualization support condition, each of the five colored cloths was 
different. This signaled to children that the object-label pair was not associated with 
any specific background context. In the aggregation + decontextualization support 
condition, three of the colored cloths were identical to each other, and the other two 
cloths differed from all other cloths.

The results indicated that the children who received support for aggregation + 
decontextualization performed significantly higher than children who received sup-
port for only aggregation or only decontextualization. Moreover, only the children 
who received support for both aggregation + decontextualization performed at lev-
els higher than chance. This suggests that novice word learners might need two 
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types of contextual support during learning to generalize category membership to a 
new context. Namely, children need both support to aggregate and support to decon-
textualize relevant features (see Imai and Childers, this volume, for related findings 
from studies using progressive alignment).

A second way that variation in the environment might be important for word 
learning has to do with variation in the features of the objects/categories themselves. 
For example, if the word “purple” is exclusively paired with a purple stuffed bear, a 
child might form a very narrow category of purple that does not include purple cars 
or purple blocks. Moreover, a narrow range of categories might lead to an overly 
conflated understanding of category membership in which “purple” refers to things 
that are purple and fuzzy or perhaps simply a wrong understanding in which purple 
refers to fuzzy animals.

Perry, Samuelson, Malloy, and Schiffer (2010) examined how variability in 
exemplars during training affected category development (as evidenced by word 
learning) both in and out of the lab. Specifically, they examined how variability 
across exemplars affected (1) learning a name for a specific exemplar, (2) general-
izing that name to other members of the same category, (3) extending other novel 
labels to other novel category members, and (4) overall vocabulary development 
outside the lab setting. In this longitudinal study, 18-month-olds were trained on 12 
categories rarely known at their age but commonly known by older children (e.g., 
toothbrush, bucket).

Over several weeks, infants participated in multiple training sessions for these 
12 categories. Half the infants received training on highly similar exemplars for 
each category (i.e., low within-category variability), and half the infants received 
training on highly variable exemplars for each category (i.e., high within-category 
variability). Overall, the 18-month-olds in the high-variability condition were bet-
ter at generalizing trained category labels to new exemplars and showed faster 
vocabulary acceleration outside the lab relative to infants in the low-variability 
condition. Throughout the study, infants in both conditions began attending more 
to objects’ shape, as this is often a reliable marker of category membership in 
English (see Landau, Smith, & Jones, 1988, 1998); however, infants in the low-
variability condition began to overgeneralize based on shape even when it was not 
a category-defining feature. In contrast, infants in the high-variability condition 
were more discerning in their generalizations, generalizing based on shape when it 
was relevant but by other features (e.g., material) when shape was irrelevant. 
Overall, these results suggest that low within-category variability leads to stricter 
attentional biases, whereas high variability within a category leads to more flexi-
bility in attention. When there was more variability in exemplars, learners were 
able to identify both (1) a wider range of features that were acceptable for category 
inclusion and (2) which features were irrelevant for determining category 
membership.

In sum, multiple examples are an important source of variability, and different 
amounts and types of variability within a category affect how the category is 
formed. Although high within-category variability may not facilitate immediate 
category learning, it does support category learning in the long term. Experience 
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with multiple examples influences attention (and, thus, memory) and facilitates the 
identification of category-relevant and category-irrelevant features of subsequent 
exemplars. However, in generalization tasks, category members might not provide 
sufficient cues to prior instances because of the variation between category mem-
bers, so high variability also risks a lower likelihood of aggregation. There appears 
to be a delicate balance between providing support for decontextualization and pro-
viding support for aggregation. However, the balance is expected to shift with 
development. For example, although 2-year-olds in the Goldenberg and Sandhofer 
(2013) study benefited when given support for decontextualization and aggrega-
tion, by 4 years of age, children can generalize in a new context regardless of the 
context or level of support (Vlach & Sandhofer, 2011).

�Multiple Examples Provide Support for Retention 
and Memory

By 6 years of age, children typically know somewhere between 6000 and 10,000 
words (Bloom & Markson, 1998; Carey, 2010). This is remarkable in that not only 
do children need to learn how words map onto meanings, but children also need to 
generalize the meaning to other members of the category. For example, children 
need to learn that the word “teapot” refers to the white ceramic teapot at home, but 
they also need to extend the label to new instances they are experiencing for the first 
time (e.g., the small pink teapot at a tea party). Moreover, children need to retain 
these word-referent correspondences across time so they can recall or recognize the 
label at a later date.

How is it that children are able to remember a particular word and recall it weeks 
or months later? As any student studying for the SAT can attest, knowing the word-
referent correspondence at one point in time does not mean that the word will be 
remembered later.

Recalling word-referent correspondences across time benefits from frequency. 
Words that are infrequently heard or produced are the ones that are most likely to be 
forgotten. A long history of research has sought to describe the relationship between 
memory and forgetting (e.g., Ebbinghaus, 1885/1913). The forgetting curve 
describes memory retention over time. Although the rate of forgetting depends on 
multiple factors, a typical curve for adults shows that initially the rate of forgetting 
is rapid, such that retention for newly acquired information is reduced by 50% after 
a few days.

Children’s word recall seems to show a similar rate of forgetting. Vlach and 
Sandhofer (2012) tested word retention at three time points: immediately after 
learning, 1 week after learning, and 1 month after learning. In this study, 3-year-olds 
participated in a measurement game. At one point during the game, participants 
heard a single novel word-object correspondence (e.g., “Here is a koba. Let’s mea-
sure it”). During the test, participants were asked which object was the koba. 
Figure 8.3 shows the results. When tested immediately after the conclusion of the 
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game, roughly 70% of children were able to identify the correct object. However, 
after 1 week, approximately 35% of children were able to identify the correct object, 
and after 1  month, only around 20% of children were able to identify the cor-
rect object.

These results indicate that without intervening reminders, children forget words 
over time (see also, Horst & Samuelson, 2008). However, memory can be increased 
by providing supports that boost memory. In a second study, Vlach and Sandhofer 
(2012) provided children with different amounts of memory support by increasing 
saliency, by providing multiple repetitions of the word at the time of learning, or by 
having children repeat the word themselves. These types of supports increased the 
percentage of children who were able to correctly identify the object at 1 week and 
1 month, suggesting that word retention may be subject to the same kinds of influ-
ences as other aspects of memory.

How can children remember words if they forget them? On the one hand, forget-
ting words seems problematic if children need to amass a lexicon of approximately 
6000 words by age six. It would seem much simpler to get to 6000 if children could 
hear a word once and remember it forever. However, the content of children’s (and 
adults’) lexicons is predictable based on the frequency of occurrence. At age 6, 
children’s lexicons mostly include the 6000 highest-frequency words from their 
language input. Thus, children know words like “sleep” rather than lower-frequency 
words like “abdicate.” This means that by 6 years of age, children have heard thou-
sands of discrete instances of each of the words in their lexicons.

On the other hand, forgetting across learning events is beneficial for long-term 
recall (Anderson, Bjork, & Bjork, 2000). The memory of a newly learned word-
object correspondence continues to decay across time. Study phase retrieval theo-
ries argue that when the word is reencountered, it reactivates the first memory trace 
and strengthens the memory for the word. If a word is only encountered once, bar-
ring some kind of extraordinary event that would make the experience highly salient, 
the memory trace should decay over time and eventually be forgotten. Study phase 
retrieval theories argue that forgetting between learning events is critical for the 
efficiency of memory. Information that reoccurs, and reoccurs frequently, gets 
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remembered. In real-world word learning in which children experience multiple 
examples of words at different points in time, the memory trace should be continually 
reactivated and thus less subject to forgetting. Thus, the ability to retain word-
referent correspondences across time so children can recall or recognize the label at 
a later date is supported by low-level memory processes.

Evidence for this comes from studies in which information is either presented 
simultaneously or spaced out across time (see Childers & Tomasello, 2002). In one 
study (Vlach, Ankowski, & Sandhofer, 2012), 2- to 2.5-year-old children learned 
the names for novel categories in one of three learning schedules: simultaneous, 
massed, or spaced. In all of the conditions, children saw three different examples of 
the category, and the amount of labeling and total presentation time was controlled. 
In the simultaneous schedule, all three instances of the category were presented at 
the same time. In the massed schedule, the three instances of the category were 
presented one at a time in immediate succession. In the spaced schedule, there was 
a 30-second play break between each of the three presentations.

Children were tested using a forced choice test in which children were asked to 
select another member of the category from an array of objects. When tested imme-
diately following learning, children in all three learning schedules identified the 
correct object at levels above chance. The standout, though, was the simultaneous 
schedule. As Fig. 8.4 shows, when tested immediately, children in the simultaneous 
schedule identified the correct object significantly more often than children in either 
of the other two schedules.

However, when children were instead tested after a short delay (15 minutes), 
performance changed dramatically. Children who learned the words in either the 
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simultaneous or massed schedules did not identify the correct object at levels above 
chance. When tested after a delay, only the children who learned the words under 
the spaced schedule identified the correct object at levels above chance. Children’s 
performance in the spaced schedule was significantly higher than in the simultane-
ous schedule or massed schedule.

Why did the spaced schedule result in higher performance after this short delay? 
One explanation is that the delay between each of the presentations allowed time for 
forgetting (e.g., Ebbinghaus, 1885; Vlach, 2014). As a result, children in the spaced 
schedule engaged in deeper retrieval. This type of deeper retrieval should have two 
effects: (1) it should strengthen the retrievability of both the latent and current mem-
ories of the category, and (2) it should slow the rate of forgetting of memories of the 
category (Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008; Pavlik & Anderson, 2008).

A 30-second interval is considerably smaller than the types of intervals a child 
encounters in everyday life; however, children also typically need to remember 
word-referent correspondences for longer than 15 minutes. There is a relation-
ship between the ideal spacing interval – the amount of time that passes between 
learning events and the retention interval – such that retention over long periods 
of time benefits from longer intervals of time between each presentation in the 
learning phase.

There is an important caveat to this result, however. Whether children are able to 
benefit from spacing depends on the category to be learned and, specifically, chil-
dren’s past learning history. For example, English-learning children are biased to 
attend to objects’ shape over other properties, such as color and texture (e.g., Landau 
et al., 1988). Slone and Sandhofer (2017) examined the effect of spacing on 2- to 
3.5-year-old children’s learning of categories organized by shape compared to cat-
egories organized by texture or color. Spaced presentations led to significantly bet-
ter learning of shape categories, but not of texture or color categories, compared 
with massed presentations. One possibility is that spacing may preferentially benefit 
children’s shape category learning because of children’s past learning histories have 
created attentional biases to the shapes of objects over other features. These atten-
tional biases, in turn, influence memory and retrievability.

Altogether, the results suggest that although children forget words over time, 
forgetting creates a desirable difficulty such that the amount of effort required to 
remember words improves long-term performance and, as a result, we are able to 
recall words over long periods of time (Bjork, 1994; Bjork & Kroll, 2015). Our 
memory systems tend to advantage information that repeats over time, that we our-
selves need to retrieve, and/or information that occurs in highly emotionally salient 
circumstances. This tends to work out well for a developing lexicon. The words that 
are most remember are those that are most frequent and that are retrieved most often.

Children’s language learning environments provide an incredibly rich backdrop 
for word learning (see Smith et al. (2018) for a discussion of how children’s devel-
opment in the first few years creates statistical data that increases in richness with 
the child’s expanding sensorimotor abilities). In real-world learning situations, chil-
dren hear words across multiple time schedules. For example, as a child gets dressed 
for the day, each of a child’s two shoes might be simultaneously labeled. Later when 
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the shoes are taken off and put away one at a time, each shoe might be labeled using 
a massed learning schedule. And because there is a delay between when shoes are 
labeled in the morning and later in the evening, children also experience the label 
using a spaced schedule. Moreover, before a child retrieves and produces their very 
first word, they have likely heard thousands of instances of that word spaced apart 
over different periods in time. In this way, a child’s entire language history ensures 
what words children will remember and retrieve.

�Conclusion

In this chapter, we have described how experiencing words in variable contexts and at 
different points in time provides support for (1) aggregating category members together, 
(2) abstracting the meaning of words, and (3) remembering and retrieving words across 
time. Multiple examples of words in children’s language input are embedded in the 
process of learning words and critical for successful word learning and retention. 
Mechanisms such as statistical learning work particularly well with the type of repeated 
language exposure that children experience, because it suggests one way that low-level 
co-occurrence patterns in the environment can lead to word learning.

A number of studies examining word learning in young children have demon-
strated that children can do quite a lot with a single example. In studies testing in-
the-moment induction, an experimenter shows a child an unfamiliar object, labels 
the object with a novel word, and then observes which other objects the child will 
extend the word to while the original object is still in view (e.g., “This is a dax. Can 
you hand me another dax?”). These types of studies have contributed a wealth of 
information about how children learn words. One strong feature of these studies is 
that they typically consider how children’s past learning history affects testing in-
the-moment induction. For example, children who know many nouns for categories 
organized by shape (e.g., words like spoon in which the spoon shape and not the 
color or material determines whether an object is a spoon) are much more likely to 
extend words for solid objects to other objects that share the same shape than are 
children who know few nouns for categories organized by shape. What is notewor-
thy here is that even though children may demonstrate one trial learning in the labo-
ratory, they bring an entire history of learning multiple (but different) examples of 
shape words to bear on the task.

In this chapter, we have discussed how multiple examples aid children’s word 
learning through children’s sensitivities to the statistical regularities of their envi-
ronments. Words are plentiful in children’s everyday lives, and children are clearly 
sensitive to, and benefit from, hearing multiple examples of words. Not only are 
children’s first words among the words that are most frequently used in speech 
directed to them, but children are most likely to remember and retrieve the words 
that reoccur over distributed periods of time. As children gain vocabulary and expe-
rience, they are better able to learn through other mechanisms; for example, they 
can learn words solely through linguistic context. But even into adulthood, aggrega-
tion, abstraction, and retention remain core components of word learning.
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Chapter 9
Mechanisms for Evaluating Others’ 
Reliability When Learning Novel Words

David M. Sobel, Elena Luchkina, and Kristen Tummeltshammer

Abstract  Word learning is a social act. Because there is an arbitrary relation 
between words and their meaning, children must learn words from other people. 
Other people, however, are not always reliable sources of knowledge. People can be 
ignorant, hold false beliefs, or simply be deceptive. How do children evaluate the 
reliability of sources of knowledge for word learning? This chapter investigates the 
possibility that children possess multiple mechanisms for evaluating such reliability 
and possess such mechanisms very early in development. We suggest that infants 
not only track the accuracy of others using statistical learning mechanisms but also 
incorporate their existing knowledge of the world into judgments of reliability to 
make judicious inferences about the knowledge of a speaker and the pragmatics of 
a communicative act. Moreover, we suggest that as children get older, both low-
level associative mechanisms and higher-level cognitive processes influence the 
way in which children track and use others’ reliability as sources of knowledge.

Over the past 10 years, there has been growing interest in young children’s capacity 
to learn from other people’s verbal testimony. There is now ample evidence that 
young children can evaluate the reliability of others’ verbal information and use that 
evaluation to make judgments about their knowledge of novel words (see, e.g., 
Harris, 2012; Mills, 2013; Sobel & Kushnir, 2013 for reviews). This research 
focuses on children’s judgments about the referents of novel labels generated by 
speakers who, in the past, have differed in their accuracy of labeling familiar objects. 
Preschoolers appear capable of tracking that history of accuracy and generalizing 
from others’ novel labels judiciously (e.g., Clément, Koenig, & Harris, 2004; 

The first author was supported by NSF 1420548 and 1661068 during the writing of this chapter 
and while this research was conducted. The third author was supported by NIMH F32MH108278-01 
during the writing of this chapter. We thank Dima Amso, Kathleen Corriveau, Natasha Kirkham, 
and James Morgan for helpful discussion about the research discussed in this chapter.

D. M. Sobel (*) · E. Luchkina · K. Tummeltshammer 
Brown University, Providence, RI, USA
e-mail: david_sobel_1@brown.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35594-4_9&domain=pdf
mailto:david_sobel_1@brown.edu


schrist3@swarthmore.edu

180

Koenig, Clément, & Harris, 2004). They also appear to generalize others’ category 
of knowledge from accuracy information (e.g., Koenig & Harris, 2005a; Kushnir, 
Vredenburgh, & Schneider, 2013; Sobel & Corriveau, 2010), and by the age of 4, 
children are sensitive to the probability with which an individual is likely to make 
an error (see, e.g., Pasquini, Corriveau, Koenig, & Harris, 2007). Further, preschool-
ers can use their epistemic knowledge to discount accuracy information and thus 
integrate accuracy information with other kinds of knowledge to infer whether 
another is a reliable1 source of information (e.g., Nurmsoo & Robinson, 2009). 
Assessing the reliability of others’ information is important not only for learning the 
meaning of words but also as a basis for social learning and cultural transmission 
(e.g., Bergstrom, Moehlmann, & Boyer, 2006; Harris & Koenig, 2006; Mascaro & 
Sperber, 2009).

Elsewhere, we have documented a parallel between how children learn causal 
relations from observed data and how children establish others’ reliability for social 
learning (Sobel & Kushnir, 2013). Early in development, children’s causal reason-
ing is based primarily on associative information. Infants possess statistical learning 
mechanisms for registering event structure (e.g., Haith, 1993; Kirkham, Slemmer, 
& Johnson, 2002). With experience, children integrate existing conceptual and 
social knowledge with this associative information to make more sophisticated 
causal inferences or to discount regularities that denote spurious associations 
(Denison & Xu, 2010; Madole & Cohen, 1995; Sobel & Kirkham, 2006, 2007, 
2012). In this chapter, our goal is to elucidate and support a similar mechanism for 
assessing reliability in others for selective word learning. Children initially begin by 
registering statistical regularity among informants and their accuracy (see Chaps. 2, 
4, and 8). Such a mechanism forms the basis of assessing reliability but is quickly 
incorporated with a more rational system that integrates one’s existing knowledge 
with accuracy information to make reliability judgments.

To outline the arguments in this chapter, we begin by considering children’s abil-
ity to track the accuracy of others’ information. Our goal is to show that infants have 
the capacity to track accuracy information within the first year of life. They then 
begin to integrate other pieces of existing knowledge into their judgments. Even in 
infancy, existing knowledge allows children to make judicious inferences about 
both the knowledge of the speaker and the pragmatics of the communicative act and 
either update their knowledge with the new information or resist it based on their 
inferences. We conclude by showing that even though this more sophisticated learn-
ing mechanism explains children’s selective word learning, children also retain the 
associative information on which this more rational system is built.

1 Throughout this chapter, we will use the term accuracy to refer to whether informants generate 
appropriate labels for familiar objects or, more generally, appropriate or expected information. We 
will use the term reliability to refer to whether informants are expected to provide consistent infor-
mation over time. That is, reliability can be based on past accuracy, but reliability could emerge 
from other factors as well if accuracy information is unavailable.
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�Associative Origins of Selective Learning

Infants come into the world equipped with statistical learning capacities that allow 
them to detect regularity in a complex, noisy natural environment (e.g., Kidd, 
Piantadosi, & Aslin, 2014; Kirkham et  al., 2002; Haith, 1993; Saffran, Aslin, & 
Newport, 1996; Tummeltshammer & Kirkham, 2013). Such a learning mechanism 
offers a means by which children might come to recognize others as accurate 
sources of information. By tracking accuracy over time, children may establish a 
likelihood estimate of an informant’s future accuracy, which may be applied to 
future information generated by that informant.

Early studies of selective trust were often motivated by this interpretation 
(Clément et al., 2004). Such an account also explains why children use the accuracy 
information informants generate to make novel inferences about other information 
those informants generate, even when such generalization is not warranted (e.g., 
halo effects, such as making inferences about which informant will be more proso-
cial based on who labels familiar objects correctly; see Brosseau-Liard & Birch, 
2010). More notably, this interpretation is consistent with arguments made by 
Jaswal et al. (2010; following philosophical claims by Reid, 1764), who suggest 
that because informants usually provide us with accurate information, children rely 
on the testimony of others because they have generalized this association. Because 
people usually provide accurate information, we assume that the information people 
provide us is accurate. Recently, Heyes (2015) extended this argument to suggest 
that social learning of nonverbal information (e.g., imitation) can be explained by 
associative mechanisms. While she is agnostic as to whether associative mecha-
nisms contribute to selective word learning, we suspect that such a mechanism is 
consistent with the views we articulated above.

Early trust in speakers’ accuracy is present in very young children. By 16 months, 
children expect interlocutors to provide appropriate labels for objects; when chil-
dren hear an informant generate an inaccurate label for a familiar object, they look 
longer at that informant (Koenig & Echols, 2003). In another study, when intro-
duced to a single speaker who either labeled familiar objects accurately and inac-
curately or feigned ignorance about the labels of the objects (among other 
conditions), 2-year-olds retained a novel label generated by that speaker for a novel 
object equally often among these three conditions (Krogh-Jespersen & Echols, 
2012). Jaswal (2010; Jaswal et al., 2010) suggested that 3-year-olds struggle to learn 
that individuals who are consistently inaccurate sources of information about the 
location of objects are unreliable; 4-year-olds, in contrast, learn to distrust such 
inaccurate informants relatively quickly. Such findings parallel findings from other 
studies contrasting the accuracy of two speakers (Clements et  al., 2004; Koenig 
et al., 2004); the 3-year-olds in these studies tended to use accuracy information as 
the basis for word learning less frequently than did older children. These findings 
led Koenig and Harris (2005b) to suggest that young children “fail to effectively 
inhibit their default assumption that other people’s beliefs are true” (p. 458) or, more 
generally, that children have a specific “robust bias to trust” (Jaswal et al., 2010, 
p. 1541) others’ verbal information.
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This conclusion, however, is controversial as there is also evidence that very 
young children track accuracy information and use that information as the basis for 
selective learning. Koenig and Woodward (2010) demonstrated that there were 
some conditions under which 2-year-olds would rely on others’ past accuracy selec-
tively. This assertion was supported by Brooker and Poulin-Dubois (2013), who 
found that 18-month-olds could track and learn from others selectively under cer-
tain simplified circumstances. Both of these findings, however, rely on slightly dif-
ferent methods for assessing reliability. They presented children with both an 
accurate and inaccurate speaker, establishing the accuracy of the two informants on 
the same object. In Krogh-Jespersen and Echols’ procedure, children only interact 
with a single informant who is either accurate or inaccurate and do not see a contrast 
between an accurate and inaccurate speaker. Vanderbilt, Heyman, and Liu (2014) 
showed that when two speakers labeled the same object differently, that contrast 
facilitates children’s reliability judgments; when children observe only one speaker 
label objects accurately or inaccurately, it isn’t until much later in development 
(usually around age 4) that children can discount an inaccurate speaker’s labels. The 
Krogh-Jespersen and Echols’ procedure seems much more ecologically valid; how 
often do children – particularly very young children tasked with learning words for 
the first time – directly observe two people label the same object differently?

Given this concern, we (Luchkina, Sobel, & Morgan, 2018, Experiment 1) modi-
fied these previous investigations in several ways. We introduced 18-month-olds to 
videos of two informants. The first informant labeled a set of familiar2 objects accu-
rately while the second labeled a different set of familiar objects inaccurately (using 
labels that would be known to the child). Thus, while children observed an accurate 
and an inaccurate speaker, these two speakers never labeled the same object and 
never presented the contrast that Vanderbilt et al. suggested was critical to improv-
ing children’s sensitivity to accuracy. Then, between subjects, one of the two infor-
mants brought out two novel objects and gives each object a novel label (just like in 
the Krogh-Jespersen and Echols’ procedure).

Using an intermodal preferential-looking paradigm (IPLP), children were then 
assessed on the mapping of the referents of these labels. On familiar object trials, 
children saw two familiar objects and were asked to identify one of the familiar 
objects using a familiar label (so if children saw a ball and a shoe, they might hear, 
“Look, a shoe! Where’s the shoe?”). Critically, the speaker on all the test trials was 
novel – this way, we could test whether infants generalized the label for the object, 
as opposed to learn that a particular speaker simply uses these labels. Regardless of 
whether the accurate or inaccurate speaker labeled novel objects with novel names, 
children should look to the appropriate object on familiar object trials. On novel 
object trials, children saw the two novel objects that had previously been labeled by 
the speaker, and a novel voice asked them to identify one of the objects using a label 
that had been generated by the speaker. Here, the expectation was that children 

2 Familiar and known labels were confirmed from pilot testing and parental reports of toddlers’ 
productive and receptive vocabularies filled out before the experiment commenced.
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would differentiate between the accurate and the inaccurate speaker conditions. 
Unlike most other selective word learning experiments that recruit older children 
and used manual forced-choice procedure, in our study, toddler’s word learning 
outcomes were evaluated based on looking time in an intermodal preferential-
looking procedure. Because we tested 18-month-olds, a manual task may have been 
less sensitive to their word knowledge for various information-processing reasons 
(e.g., limited understanding of the experimenter’s instructions or the inability to 
suppress the desire to pick up a more attractive object).

Figure 9.1a shows the pattern of looking times to the target objects. On the trials 
in which children saw two familiar objects and heard a familiar label, they looked at 
the appropriate object above chance levels, regardless of whether the accurate or 
inaccurate speaker labeled the novel objects. This suggests that children can partici-
pate in the task and recognize familiar labels for familiar objects regardless of con-
dition. What is more critical is how children performed when they were shown the 
two novel objects and heard one of the novel labels. On these trials, children’s look-
ing time differed between the trials, showing preferential looking only in the accu-
rate condition. Only when a previously accurate informant generated novel labels 
for novel objects did 18-month-olds generalize those labels to other speakers.

These results suggest that toddlers are able to discount information from inac-
curate speakers even in the more ecologically valid situations as those suggested by 
Krogh-Jespersen and Echols (2012) in which only one speaker provides informa-
tion about their accuracy. Moreover, there is some evidence that children are making 
this inference based on more than just associative mechanisms, as children respond 
to novel speakers, and not the same informant. This suggests that they generalize the 
label and not just that a particular speaker calls an object with a particular label. 
What this work does not show, however, is that children are really using more 
sophisticated mechanisms for selective word learning – a point we will discuss in 
the next section.

�Do More Sophisticated Mechanisms Underlie Children’s 
Social Learning: A Gaze Following Example

Previous findings on children’s selective word learning have suggested that toddlers 
might not be able to discount novel labels for novel objects even if speakers were 
unreliable when faced with only a single speaker. The Luchkina et al. (2018) findings 
suggest that 18-month-olds can be judicious in their evaluation of others’ informa-
tion for word learning, even when there is only information presented by a single 
speaker.

Such findings are consistent with multiple studies outside of the domain of word 
learning. Sixteen-month-olds distinguish between individuals who reliably gaze 
where they search for hidden objects and individuals who do not (Poulin-Dubois & 
Chow, 2009). Fourteen-month-olds imitate a competent but not an incompetent 
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model (Zmyj, Buttelmann, Carpenter, & Daum, 2010), and even 12-month-olds 
prefer objects demonstrated by individuals who appear more knowledgeable about 
the objects (Stenberg, 2013). All of these data suggest that infants use the reliability 
of others’ social cues to draw inferences about the world.

What are the origins of these abilities? Tummeltshammer, Wu, Sobel, and 
Kirkham (2014) demonstrated that 8-month-olds could track the accuracy of poten-
tial informants in a gaze-monitoring paradigm and use that reliability information 
judiciously to modify future behavior. Their procedure is shown in Fig. 9.2. They 
introduced infants to two individuals on a screen. During familiarization, each indi-
vidual turned and gazed at particular locations in space over four different trials: one 
always predicted the appearance of an interesting video in that location, while the 
other was only accurate in predicting the location of the video on one of four trials. 
At test, the informants turned and gazed at locations where they had predicted the 
onset of the video during familiarization as well as locations they had never pre-
dicted before (test and generalization trials, respectively). On both types of trials, 
infants followed the gaze of the reliable informant but not the unreliable informant. 
Thus, as young as 8  months, infants are judiciously responding to the accuracy 
information they observe.

One interpretation of all of the data presented in the previous section is that 
infants are using the statistical learning capacities available to them early in infancy 
to make judgments about others’ reliability. In the word learning experiments, chil-
dren might associate the word they hear, the object they see, and the speaker who 
utters the word together to form a unit; then they use that unit  – that is, those 
co-occurrences – to make a judgment about the valence of that speaker: accurate 
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Fig. 9.2  Familiarization and test trials presented in Tummeltshammer et al. (2014)
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speakers co-occur with reliable novel information, inaccurate speakers less so. 
Preference about whom to trust is based on preferring accuracy or avoiding inac-
curacy (e.g., Lucas & Lewis, 2010).

There are difficulties with this argument. Registering statistical regularities 
among events alone does not provide children with the information necessary to 
make the same kinds of inferences as older children. Consider work described by 
Madole and Cohen (1995). They presented 14- and 18-month-olds with stimuli that 
had specific links between different parts of an object and the functions of those 
parts. At test, results showed that 14-month-olds registered any kind of statistical 
regularity among object parts and their functions, including correlating the shape of 
one part of an object with the function of another part (a mechanistically implausi-
ble regularity). Eighteen-month-olds, given the same exposure, did not learn these 
types of correlations. The development here involves learning to ignore regularities 
that are not salient because of their mechanistic implausibility. Children’s knowl-
edge of causal mechanisms allows them to recognize that this particular regularity 
is not mechanistically plausible and thus should be ignored.3 More generally, the 
existing knowledge that children have affects how they might attend to and register 
correlational information (or affects the output of their statistical learning process).

Knowing that faces can cue the spatial locations of events might be critical for 
8-month-olds to interpret the regularity in Tummeltshammer et al.’s (2014) proce-
dure. Indeed, we suggested that infants were incorporating the accuracy information 
they observed with their own knowledge of faces as social cues. To investigate this 
possibility, in a second experiment, Tummeltshammer et al. (2014) replicated their 
procedure using dynamic, arrow-like stimuli instead of faces. Unlike faces, these 
stimuli were completely novel, but the regularities presented in the study were suf-
ficient to generalize the accuracy information judiciously. Indeed, 8-month-olds 
registered a difference between the two arrows for locations that had previously 
been shown to them but could not generalize this accuracy to novel locations. This 
finding suggests that they registered the associative information they observed, but 
unlike faces, that statistical regularity was not salient enough for them to be able to 
generalize to novel situations. Integrating this finding with the first experiment with 
faces suggests that 8-month-olds potentially integrate the associative accuracy 
information they observe with their experience in following gaze from faces or their 
prior knowledge of faces as informative cues to locations in space. These experi-
ences potentially afforded the face stimuli to be more salient for tracking accuracy 
than the arrow stimuli.

To test this hypothesis, we replicated the study using faces with two additional 
age groups: 5-month-olds and 12- to 13-month-olds (Tummeltshammer, Sobel, & 
Kirkham, 2019). Children’s responses across these ages are shown in Fig. 9.3. Both 
age groups interpreted the face stimuli differently than did the 8-month-olds. The 
younger infants essentially treated the face stimuli in the same way as the 8-month-

3 Or is registered but ignored; these alternatives have not been investigated empirically. We favor 
the explanation presented in the main text but recognize that this is an empirical question.
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olds treated the arrow stimuli. They were able to follow the gaze of the accurate face 
when it cued a familiar location, but they could not generalize this accuracy to novel 
locations. In contrast to the 8-month-olds, they did not engage in any kind of sys-
tematic response when given the inaccurate face. Five-month-olds (of course) do 
not have the same experience or capacity to follow gaze as do older infants, and as 
a result, the accuracy information presented here might not have been sufficient for 
them to use to generalize. Five-month-olds also may not have the capacity to inter-
pret these stimuli in any way other than through statistical regularity. This would be 
consistent with the development that Sobel & Kirkham (2006, 2007) found between 
5- and 8-month-olds regarding their causal reasoning abilities. They found that 
8-month-olds registered conditional independence among events in ways that were 
inconsistent with their just recognizing statistical regularity among events. Five-
month-olds, in contrast, responded to the same stimuli in a manner consistent with 
their registering the statistical regularity but ignoring the conditional independence 
among events.

The older (12- to 13-month-old) infants, in contrast, performed quite differently. 
They followed and generalized the gaze of the accurate face, just like the 8-month-
olds, but they also followed and generalized the gaze of the inaccurate informant. 
Because these children have so much more experience with faces and have been 
accumulating evidence of gaze as an informative spatial cue for many months (e.g., 
Reid, Striano, Kaufman, & Johnson, 2004; Scaife & Bruner, 1975; Senju, Csibra, & 
Johnson, 2008), it is quite possible that their prior knowledge of faces as reliable 
spatial cues was weighted more heavily than the (relatively small) amount of infor-
mation indicating that faces can be unreliable social cues that were available in the 
experiment. This idea is consistent with the “robust bias to trust” interpretation 
(Jaswal et al., 2010) suggested above but reinterprets these findings not as indicating 
a bias toward informants’ credulity but as stronger evidence of a sensitivity to com-
municative intent (similar to the argument made by Csibra & Gergely, 2009, regard-
ing natural pedagogy). Indeed, many of Jaswal’s studies suggesting that 3-year-olds 
have this robust bias involve children coming to recognize that their interlocutors 
can be intentionally deceitful, which may have a prolonged developmental trajec-
tory (e.g., Polak & Harris, 1999; Talwar & Lee, 2002; see Lee, 2013, for a review).

The above example suggests that infants have the capacity to integrate their 
experiences of gaze following with their tracking of informants’ spatial cueing 
accuracy. We propose that a similar mechanism underlies the way in which children 
engage in word learning. Moreover, we wish to suggest that the statistical learning 
mechanism is not simply replaced by more rational one that is more model-based. 
Rather, we suggest that the more model-free system still influences certain aspects 
of children’s judgments about others’ epistemic trust. In this way, arguments like 
the one made by Lucas and Lewis (2010) and Heyes (2015) – that is, using associa-
tive mechanisms to make these social inferences – are not rejected but rather just 
represent an incomplete story regarding the mechanisms by which children learn 
from others.

D. M. Sobel et al.



schrist3@swarthmore.edu

189

�Questions Can Answer Questions About Mechanisms 
of Selective Word Learning

We have suggested that children’s early statistical learning capacities give rise to 
their ability to track the accuracy of information generated by others. With experi-
ence, children integrate those statistical regularities with other pieces of prior 
knowledge to make judgments about the reliability of others, and they base infer-
ences about others’ information on those reliability judgments. The development 
observed in our face studies above reflects this integration. Five-month-olds only 
appreciate the regularity among events, but by 8 months, infants are integrating their 
representations of that regularity with more general prior knowledge that they pos-
sess about the informativeness of faces. This allows them to discriminate between 
accurate and inaccurate faces. By 13 months, because the prior probability of infor-
mants’ gaze cueing accuracy is so high, the familiarization events do not provide 
sufficient data to treat the inaccurate informant as an unreliable source of future 
knowledge.

Critically, we wanted to present children with a selective word learning environ-
ment that manipulated the statistical regularity among the speaker, label, and object 
but did not present any information about whether the informant was accurate or 
inaccurate. That way, we could determine whether children were only using this 
statistical regularity or were integrating that information with other pieces of prior 
knowledge to make reliability judgments.

Luchkina et al. (2018), Experiment 2) replicated their procedure but changed a 
critical aspect of the familiarization trials. Instead of speakers bringing out objects 
and making a statement about the label of the object (i.e., bringing out a star and 
saying “This is a star.”), speakers brought out the objects and asked a question about 
the identity of the object (i.e., bringing out a star and saying, “Is this a star?”). By 
using questions, we could present children with speakers who label information that 
preserved or did not preserve the speaker-label-referent association while not indi-
cating specific differences in their epistemic competence. Critically, 15-month-olds 
understand subject questions (Seidl, Hollich, & Jusczyk, 2003), and infants as 
young as 7 months are sensitive to prosodic cues that indicate the difference between 
questions and statements (e.g., Soderstrom, Ko, & Nevzorova, 2011). Liszkowski, 
Carpenter, and Tomasello (2008) showed that 12-month-olds understand the prag-
matics of questions based on the speaker’s access to information and can respond to 
questions appropriately. These findings point to the possibility that at 18 months 
(the age investigated by Luchkina et al.), toddlers will differentiate between state-
ments containing accurate label information and questions containing the same 
information. Both contain the same statistical regularity between the accurate or 
inaccurate label, referent, and speaker, which would be sufficient for a mechanism 
that only calculates this information. Children’s understanding of questions at this 
age suggests that they will not treat the questions as indicating differences in the 
reliability of the speakers if they are using a more sophisticated mechanism than one 
that only registers this statistical regularity.
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Figure 9.1b shows 18-month-olds’ performance on the IPLP measure when 
asked to identify the label uttered by either the accurate4 or inaccurate speaker. Just 
like the previous experiment with statements, 18-month-olds showed no difference 
in looking time between the accurate and inaccurate speakers when a novel speaker 
asked them to identify familiar labels for familiar objects. This serves as an impor-
tant control because there is no reason for children to differentiate between the 
conditions on these trials (i.e., they already know the meaning of these words). 
Critically, unlike the previous finding, 18-month-olds treated both the accurate and 
inaccurate question-asker as unreliable sources. They showed no difference in their 
looking time when asked to identify novel labels spoken by a novel speaker, and 
they responded at chance levels to both speakers, indicating that they did not learn 
to associate the novel label with these novel objects based on this exposure. These 
data are quite similar to performance of the 8-month-olds in Tummeltshammer et al. 
(2014) arrow condition; the familiarization data was either not strong enough or 
salient enough to produce a difference among the conditions.

These data suggest that infants are not just using the associative information 
between a speaker’s labels and the referents of those labels as the basis for general-
izing novel verbal information. There are two open questions from these findings. 
The first is why 18-month-olds treat both the accurate and inaccurate speaker as 
unreliable sources of new knowledge. Investigating how older children respond to a 
similar familiarization phase allows us to consider the extent to which children can 
integrate existing knowledge into these judgments. The second question is about the 
specific mechanism children are using, and again, investigations with older children 
might shed light on this question.

To answer these questions, we extended the Luchkina et al. procedure to consider 
how 3- and 4-year-olds treat informants who ask questions about familiar objects 
using accurate or inaccurate labels (Luchkina, Morgan, & Sobel, in press, 
Experiment 1). Children were exposed to the same familiarization phase in which 
the speakers asked questions about the labels for familiar objects, one using the 
appropriate label and the other using an inappropriate one. Then, between subjects, 
one of those speakers generated novel labels for novel objects (i.e., one of the two 
speakers labeled a novel object a “lif” and another novel object a “neem”). At test, 
the experimenter presented children with two objects: one was a novel object they 
had just seen labeled in the video, and the second was a novel object that had not 
been shown in the video. Children were asked to select an object corresponding 
with the novel label from the video (i.e., the choice would be between the object 
labeled a “lif” and a novel object not seen previously, and children would be asked, 
“Which one is a lif?”).

If children’s judgments about speaker reliability are based only on the speaker-
label-referent associations, then children should show evidence for a difference 

4 Note that accuracy here refers to whether the speaker asked a question with the appropriate label 
for the object or an inappropriate label. That is, the accurate speaker is not more reliable than the 
inaccurate speaker on a rational account. But if one is only registering statistical regularities, then 
the accurate speaker should be treated as more reliable than the inaccurate one.
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between these conditions. When speakers uses the accurate label in their questions, 
children should treat the informant as reliable; when speakers use inaccurate labels 
in their questions, children should treat the informant as unreliable. Of course, this 
was not what Luchkina et al. (2018) found in an 18-month-old sample – 18-month-
olds did not learn from either speaker’s questions, as opposed to when those speak-
ers made statements. That pattern of response might have indicated that 
18-month-olds did not understand the procedure. Alternatively, it could have indi-
cated that children thought both speakers were epistemically incompetent, after all, 
why should one ask questions about familiar objects if one knows the meaning of 
their labels?

We found that both 3- and 4-year-olds remembered the labels generated by the 
accurate and inaccurate speaker equally across conditions and at levels that were 
well above chance (Fig. 9.4a). Unlike the 18-month-olds in Luchkina et al. (2018), 
3- and 4-year-olds treated both question-askers as reliable sources of knowledge. 
Where preschoolers differed was in their response time (shown in Fig. 9.4b). They 
were slower to give correct responses when the label was spoken by the inaccurate 
speaker than by the accurate speaker. In a follow-up experiment using a similar 
method (Luchkina et al. in press, Experiment 2), similar findings emerged when 
children were asked to make a disambiguation inference as opposed to simply rec-
ognize the labels they heard the speaker generate. In this case, during test trials 
(again, in which children observed a novel object labeled by the speaker and an 
unfamiliar unlabeled novel object), children were asked to select an object corre-
sponding to an unfamiliar novel label. In this disambiguation paradigm, children 
showed no difference in their inferences – they chose the completely novel object 
when that label was generated by both the accurate and inaccurate speakers. Their 
response times did not differ between conditions and were significantly longer than 
in the first experiment (see Fig.  9.4b). This difference makes sense given the 
increased demands of the disambiguation task. Rather than responding to the asso-
ciation between the label and the speaker, children must recognize that the speaker 
is referring to the novel object not previously shown in the video because she gener-
ated a different novel label. While the associative mechanism might be involved in 
making links between the familiar object, the familiar label, and the accuracy of the 
speaker, in this experiment, one must also infer that the speaker intends to refer to 
the other object, which is a more sophisticated inference.

Together, these experiments suggest that reliability judgments in preschoolers 
are driven by a rational process that originates with recognizing associations among 
speakers, labels, and objects. Children generalize these associations to new infor-
mation introduced by the same speaker (e.g., Brosseau-Liard & Birch, 2010; Heyes, 
2015) and then evaluate that associative information based on their own knowledge. 
Much like children’s causal reasoning abilities potentially begin with their ability to 
associate information together (Sobel & Kirkham, 2012), children’s selective word 
learning might begin with such associative mechanisms but begin to integrate exist-
ing knowledge into interpreting those associations (Sobel & Kushnir, 2013).

In these studies, it is likely that children begin to integrate their experiences with 
questions, and their pragmatic expectations for social interactions, as well as their 
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choices) and preschoolers’ mean response time to the experimenter’s request (bottom figure; aster-
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specific appreciation of how yes/no questions communicate truth value information 
(Choi, 1991). Such a mechanism also explains various findings during the preschool 
years in which children integrate social or metacognitive knowledge into their judg-
ments of others’ reliability. Among other pieces of knowledge, preschoolers evalu-
ate others’ age (Jaswal & Neely, 2006), intentions (Heyman, Sritanyaratana, & 
Vanderbilt, 2013), social group membership (e.g., Kinzler, Corriveau, & Harris, 
2011), and familiarity (e.g., Corriveau & Harris, 2009) when evaluating others’ reli-
ability for word learning.

The main point that we wish to make here is that despite the prevailing effect of 
children’s knowledge on their judgments of reliability, there might be lingering 
effects of associative mechanisms on children’s selective word learning. Many situ-
ational factors that influence selective learning are rational in that they contribute to 
inferences about others’ epistemic knowledge. For example, from the child’s per-
spective, adults have more knowledge than children and indeed might be more gen-
erally reliable as sources of novel information (Jaswal & Neely, 2006). Critically, 
children also recognize that peers might have more knowledge in certain domains 
(not the meaning of novel words but the names of novel Pokémon characters) than 
adults (VanderBorght & Jaswal, 2009). Similarly, membership in a linguistic com-
munity potentially indicates linguistic as well as conceptual or conventional knowl-
edge related to that community. This would license inferences based on speakers’ 
accent (Kinzler et al., 2011) or appropriate use of syntactic structures (Corriveau, 
Kinzler, & Harris, 2013; Sobel & Macris, 2013).

�Concluding Thoughts: Beyond Selective Word Learning

We have suggested that children possess a rational mechanism for selective learn-
ing, which integrates a statistical learning mechanism that tracks the accuracy of an 
individual with other pieces of prior knowledge about informants to make infer-
ences about their reliability. We have also suggested that the mechanism through 
which children track others’ accuracy is still present and potentially used by young 
children. Others (e.g., Hermes, Behne, Bich, Thielert, & Rakoczy, 2018; Hermes, 
Behne, & Rakoczy, 2018) have suggested that children’s social learning is best 
explained by a dual-process model; they showed that children make inferences via 
a rational mechanism similar to the one we have proposed but are more likely to be 
influenced by simpler, more associative mechanisms when under cognitive load. We 
are agnostic as to whether we agree with the idea that the two systems operate inde-
pendently, but we do agree with the possibility that both associative and rational 
mechanisms underlie selective word learning.

But on this view, there is nothing special about word learning as a domain to 
investigate selective learning. Indeed, we have tried to use examples outside of word 
learning to motivate our model. We posit that integrating statistical learning with 
real-world knowledge not only allows children to engage in selective word learning 
but selective social learning more generally. It may be that selective learning under-
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lies not only certain aspects of linguistic competency but cultural and conventional 
competency more generally (see, e.g., Kline, 2015). Whether the rational mecha-
nism we have suggested here underlies all such learning is an open empirical ques-
tion but is one that we believe offers a great deal of promise.
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Chapter 10
The Search for Invariance: Repeated 
Positive Testing Serves the Goals of Causal 
Learning

Elizabeth Lapidow and Caren M. Walker

Abstract  Positive testing is characteristic of exploratory behavior, yet it seems to 
be at odds with the aim of information seeking. After all, repeated demonstrations 
of one’s current hypothesis often produce the same evidence and fail to distinguish 
it from potential alternatives. Research on the development of scientific reasoning 
and adult rule learning have both documented and attempted to explain this behav-
ior. The current chapter reviews this prior work and introduces a novel theoretical 
account—the Search for Invariance (SI) hypothesis—which suggests that produc-
ing multiple positive examples serves the goals of causal learning. This hypothesis 
draws on the interventionist framework of causal reasoning, which suggests that 
causal learners are concerned with the invariance of candidate hypotheses. In a 
probabilistic and interdependent causal world, our primary goal is to determine 
whether, and in what contexts, our causal hypotheses provide accurate foundations 
for inference and intervention—not to disconfirm their alternatives. By recognizing 
the central role of invariance in causal learning, the phenomenon of positive testing 
may be reinterpreted as a rational information-seeking strategy.

Human learners are intuitively exploratory: We acquire new knowledge from the 
outcomes of our actions. However, in order for exploration to support learning, at 
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least some of these actions must serve to evaluate our existing knowledge. Despite 
this need for informative “hypothesis testing” in everyday learning, decades of 
research examining self-directed experimentation suggests that learners rarely 
choose informative tests. That is, instead of selecting actions to test whether their 
current hypothesis is correct, both children and adults tend to prefer “positive tests”: 
actions that will produce an effect assuming their current hypothesis is correct (see 
Klayman, 1995; Zimmerman, 2007).

To illustrate, suppose you drop an ice cube on the floor and it shatters. As a 
learner, you might form an initial hypothesis that “impact with an unyielding sur-
face causes ice to shatter.” This hypothesis is also a causal explanation for your 
observation: indicating how one variable (X) makes a difference to the state of 
another variable (Y). According to traditional interpretations of Popper’s (1959) fal-
sificationist approach, testing this hypothesis would require disconfirming its alter-
natives. That is, assessing whether “X is the cause of Y” requires “negative tests” or 
actions to determine whether Y occurs in the absence of X. Here, since Y is “shatter-
ing” and X is “impacting an unyielding surface,” you should drop an ice cube on a 
yielding surface (not X), like rubber or cotton, to determine whether it will shatter.

However, learners rarely choose this kind of disconfirming action during their 
exploration. Instead, they are much more likely to repeat the initial observation: for 
example, to pick up another ice cube and drop it on the same surface or a similar 
one. This tendency to generate multiple positive examples is a puzzling characteris-
tic of self-directed learning since it does not initially appear to be informative. After 
all, these repeated demonstrations often produce the same evidence and do not dis-
tinguish between the current hypothesis (i.e., impacting an unyielding surface) and 
potential alternatives (e.g., impacting any surface at a particular speed) since they 
are consistent with both. Why then do self-directed learners consistently and repeat-
edly conduct positive tests?

In this chapter, we propose a novel answer to this question: the Search for 
Invariance (SI) hypothesis, which suggests that observing multiple positive exam-
ples may facilitate learning by allowing us to assess the invariance of our causal 
theories. That is, by repeatedly activating a hypothesized cause and checking if its 
anticipated effect occurs, positive tests generate information about the degree to 
which this relationship holds across time and contexts. Given that the majority of 
the causal relationships we encounter are probabilistic and interdependent, deter-
mining the degree of invariance is critical for utilizing causal knowledge as a basis 
for action and inference. In order to test whether and when X (e.g., impacting an 
unyielding surface) reliably brings about Y (e.g., shattering in ice), it is necessary to 
repeat X (e.g., dropping more ice on similar surfaces) and observe whether Y 
occurs again.

The current chapter will unpack this claim that the tendency to engage in positive 
testing is motivated by (and serves) our goals as causal learners. First, we will out-
line the empirical evidence for the use of a “positive testing strategy,” during explor-
atory learning, and review existing theoretical accounts that have been proposed to 
explain it. We will then introduce the Search for Invariance (SI) hypothesis and 
explain its foundations within theories of causality. After establishing this back-
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ground, we will aim to apply our novel account to reinterpret some of the primary 
examples of positive testing in exploratory learning and address potential objections 
and misinterpretations (e.g., sufficiency).

�Positive Testing Strategy

A variety of learning and reasoning behaviors have been linked to (and confounded 
with) the positive testing strategy (PTS), so it is important to establish a working 
definition of this term. For the purposes of the current discussion, PTS will be 
treated as a phenomenon of hypothesis testing and defined as the tendency (or pref-
erence) to select actions with the highest probability of producing the expected 
effect, if the current hypothesis were correct.1 That is, we will focus on cases in 
which the learner assesses a hypothesis by examining its positive instances—either 
checking whether the expected effect occurs when the hypothesized conditions are 
met or checking whether the conditions of the hypothesis are met when the event 
occurs (Klayman & Ha, 1987).

We will, therefore, not address accounts that focus primarily on whether young 
learners are able to generate hypotheses and evaluate their fit to evidence more 
broadly (e.g., Carey, Evans, Honda, Jay, & Unger, 1989; Kuhn, 1989; Kuhn et al., 
1988). This discussion is also not intended to address “confirmation bias,” the fail-
ure to seek and consider (or even to avoid and distort) conflicting evidence, which 
is often presented alongside PTS in adult research2 (for reviews, see Klayman, 
1995; Nickerson, 1998). While the ability (and willingness) to reconcile an exist-
ing theory with new evidence is critical for exploration to support learning, it falls 
outside our specific focus on the generation of evidence through self-directed action.

�PTS in Scientific Reasoning

Inhelder and Piaget (1958) were the first to experimentally examine the understand-
ing and use of the principles of experimentation in children. Later researchers adapted 
their methodologies to assess and improve scientific reasoning (e.g., Kuhn & Angelev, 
1976; Kuhn & Brannock, 1977; Siegler & Liebert, 1975), and a tremendous body of 
research has grown out of this initial work (see Zimmerman, 2000, 2007; Zimmerman 

1 As discussed below, there are many accounts of this behavior, not all of which use the term “PTS.” 
Additionally, while the term has also been used to describe learners’ motivation for conducting 
positive tests, we will restrict our use of “PTS” to refer to observable behavior.
2 The exact nature of the relationship between PTS and confirmation bias differs between accounts. 
PTS is variously suggested to be (a) an instance of (Nickerson, 1998; Wason, 1962), (b) a source 
of (see Nickerson, 1998 for review), and (c) a departure from confirmation bias (Klayman, 1995; 
Klayman & Ha, 1987).
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& Klahr, 2018 for reviews). Studies typically present children with multivariate con-
texts and assess their ability to systematically combine and isolate these variables to 
reveal causal relationships. In some cases, participants are instructed to determine the 
variable(s) causally related to an outcome (e.g., which chemicals cause a color reac-
tion when mixed; Kuhn & Phelps, 1982). In others, children are asked to determine 
whether and how variable(s) make a difference to a certain outcome (e.g., which 
features of a race car determine its speed; Schauble, 1990). Another common 
approach is to indicate a variable of interest and ask participants to test hypotheses 
about its effect (e.g., the operation performed by a computer input command; Dunbar 
& Klahr, 1989; Klahr & Dunbar, 1988; Klahr, Fay, & Dunbar, 1993).

The bulk of this research finds the development of experimentation skills to be 
slow and error-filled (e.g., Dunbar & Klahr, 1989; Inhelder & Piaget, 1958; Klahr 
et  al., 1993; Klahr & Chen, 2003; Kuhn, 1989; Tschirgi, 1980; Valanides, 
Papageorgiou, & Angeli, 2014). Importantly, many of these errors resemble PTS: 
Children tend to repeatedly choose actions and experiments that are expected to 
generate an effect (e.g., the color reaction, the fastest car) if their causal hypoth-
esis were correct. This behavior is often interpreted as driven by children’s desire 
to “demonstrate the correctness” of their hypotheses (e.g., Dunbar & Klahr, 1989; 
Inhelder & Piaget, 1958; Klahr et al., 1993; Kuhn & Phelps, 1982). Other research-
ers have viewed these explorations as evidence of a misplaced focus on an action’s 
tangible outcomes rather than its informative potential (e.g., Kuhn & Phelps, 
1982; Schauble, 1990; Schauble, Glaser, Duschl, Schulze, & John, 1995; Siler & 
Klahr, 2012; Siler, Klahr, & Price, 2013; Tschirgi, 1980; Zimmerman & Glaser, 
2001). That is, rather than trying to learn the relations between cause and effect, 
children seem to select experiments in order to reproduce positive outcomes and 
avoid negative ones.

Tschirgi (1980) is perhaps the most cited example of PTS in scientific reason-
ing (see Croker & Buchanan, 2011; Klayman & Ha, 1987 for discussions). In this 
study, 2nd-, 4th-, and 6th-grade children and adults were asked to choose an 
experiment to prove that a variable was causally responsible for either a positive 
or negative outcome. In one scenario, a character bakes a cake using one of two 
types of each of three ingredients (a flour, a sweetener, and a fat), and the cake 
comes out well. The character believes that the type of sweetener causes this 
outcome while the types of flour and fat do not matter. Participants were then 
given a choice between three potential experiments and asked to select one to 
prove the character’s hypothesis. They could (1) change the suspected cause and 
keep the other two variables constant (“VARY”), (2) change the other two vari-
ables and keep the suspected cause constant (“HOLD”), or (3) change all three 
variables (“CHANGE ALL”). According to Tschirgi, the VARY option, which 
isolates the suspected causal variable, is the only informative test of the charac-
ter’s hypothesis. However, participants of all ages only preferred this option 
when the outcome of the initial scenario was negative (i.e., when the cake came 
out badly). Otherwise, learners preferred the HOLD option—keeping the vari-
able of interest constant and changing the others. Tschirgi (1980) explains this 
finding as evidence that children and adults tend to select experiments based on 
practical rather than “logical” concerns.
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�PTS in Rule Learning

There is also extensive evidence of PTS within adult’s hypothesis testing (see 
McKenzie, 2004 for review). The classic example of this behavior is the 2-4-6 task 
(Wason, 1960),3 which asks participants to determine the rule used to generate 
sequences of three numbers. At the start of the task, the experimenter provides an 
example of a sequence generated by the rule (e.g., “2, 4, 6”). Participants are then 
able to experiment by generating novel sequences and requesting feedback from the 
experimenter about whether these follow the rule. Notably, the predominant strat-
egy is to test cases that fit the rule one has in mind: to test positive instances of one’s 
current hypothesis. For example, most adults, given the “2, 4, 6” example, form the 
hypothesis that the rule is “ascending even numbers.” In gathering evidence, the 
majority of participants will test sequences that follow this rule (e.g., “10, 12, 14,” 
“−2, 0, 2,” “104, 106, 108,” etc.) and treat affirmative feedback from the experi-
menter as evidence serving to increase the strength of their belief in the accuracy of 
their hypothesis.

The problem with using a positive testing strategy in this task is that it misses the 
correct (and more general) rule, “ascending numbers,” and provides no evidence to 
suggest that an error has been made. Wason (1960) interpreted this as evidence of 
participants arriving at their hypotheses through a process of “enumeration” rather 
than “elimination.” In other words, learners assume that confirming evidence alone 
is enough to justify their conclusions. While some participants do eventually dis-
cover the correct rule, most of them only do so after many positive tests of incorrect 
rules. Wason’s task and his conclusion that learners have a general tendency to only 
consider verification (Wason, 1960; Wason & Johnson-Laird, 1972) have both been 
used extensively as evidence of adults’ biased hypothesis testing and reasoning 
(e.g., Gorman & Gorman, 1984; Mahoney & DeMonbreun, 1977; Tukey, 1986; 
Tweney et al., 1980; Wetherick, 1962).

�Theories of PTS

Given that PTS is a widespread and well-documented phenomenon, there have been 
numerous theoretical  attempts to account for it. These accounts may be roughly 
separated into two categories, depending on whether PTS is explained as a means of 
generating an outcome or as a means of generating evidence.

3 Wason also created another classic task of hypothesis testing, the Selection Task (1968), which 
falls outside the scope of the current discussion.
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�PTS as a Means of Generating Outcomes

As mentioned above, some have suggested that learners prefer PTS because their 
selection of actions is motivated by tangible outcomes, rather than information 
value (e.g., Kuhn & Phelps, 1982; Tschirgi, 1980). Studies of early scientific rea-
soning, for example, often suggest that young learners begin with an incorrect intu-
ition about the function of experimentation. Children are described as preoccupied 
with “making events happen” (e.g., making a good cake, producing a color reaction) 
rather than identifying the causal factors responsible for these outcomes.

Based on this evidence, Schauble, Klopfer, and Raghavan (1991) proposed the 
“science versus engineering models” of self-directed behavior: Individuals can adopt 
either a “science goal” (to determine causal relationships) or an “engineering goal” 
(to generate or reproduce a particular effect) in interactions with their environment. 
According to the authors, children incorrectly approach scientific reasoning tasks 
using an “engineering” model, which is concerned with generating outcomes and 
stops whenever its target (or an acceptable approximation) is achieved. Schauble 
(1990) distinguishes this account of PTS from the one offered by Klayman and Ha 
(1987). In particular, the engineering model does not claim that learners are seeking 
falsification or information of any kind. Instead of trying to determine the causal rela-
tionships between variables and outcomes, young explorers manipulate variables in 
an attempt to bring about desirable outcomes (Schauble, 1990). In other words, 
according to this theory, learners’ interventions are often uninformative because 
information is not their goal. The strongest version of this account implies that chil-
dren do not differentiate between understanding an event and making it occur. 
Although later empirical work provides evidence against this claim (Sodian, Zaitchik, 
& Carey, 1991; see also Lapidow & Walker, 2019), the “science versus engineering” 
explanation of PTS continues to be cited and used as a framework for understanding 
choice behavior within scientific reasoning (e.g., Siler et al., 2013; Siler & Klahr, 2012).

Other researchers have made suggestions similar to the “science versus engineer-
ing” hypothesis but concerning adult choice behavior (e.g., Friedrich, 1993; 
Schwartz, 1982; Vogel & Annau, 1973). These interpretations suggest we employ 
PTS because we value maximizing current over long-term gains. One early articula-
tion of this idea comes from Einhorn and Hogarth (1978), who describe a conflict 
between acting in accordance with the current hypothesis (i.e., maximizing current 
success) and acquiring information to improve it (i.e., increasing long-term suc-
cess). As a result, in contexts where the potential cost of false positives is more 
damaging than that of false negatives, learners may be entirely justified in gathering 
positive evidence.

These “outcome-focused” theories of PTS all point to the tension between 
“exploitation,” taking an action that is known to have a high likelihood of success, 
and “exploration,” taking a less certain (or less rewarding) action in order to improve 
one’s epistemic status. Schauble and colleagues (1990, 1991) suggest that this ten-
sion results from a lack of understanding on the part of the learner, while Einhorn 
and Hogarth (1978) and others point to situational factors that lead the learner to 
prioritize exploitation. Regardless of the source, this is a real tension in behavior 
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and has been shown to influence decision-making on a variety of tasks. For exam-
ple, Heyman and Dweck (1992) report that an individual’s response to challenges 
and failures may be explained by whether they hold a “performance goal” (to prove 
one’s competence) or a “learning goal” (to improve one’s skills).4 A recent study has 
also shown that sensitivity to the distinction between production and investigation 
influences the actions of causal learners as a rational adaption to context demands 
(Yoon, MacDonald, Asaba, Gweon, & Frank, 2018). However, regardless of whether 
it is due to a  lack of understanding or situational pressures, the tension between 
productive and informative actions is likely not the only factor responsible for PTS.

�PTS as a Means of Generating Evidence

The accounts reviewed above argue that positive tests reflect learners’ desire to 
bring about tangible effects. However, other accounts have suggested that PTS is an 
intentional (though not always valid) form of hypothesis testing. For example, 
Wason’s (1960, 1972) interpretation of adults’ behavior on the 2-4-6 task suggested 
that learners believe that their positive tests provided valid conclusive evidence. 
Wason based this analysis on the prescriptions for hypothesis testing laid out by 
Popper (1959), who argued that instances that verify a hypothesis are always ambig-
uous since they can occur even if the hypothesis is ultimately incorrect. Learners 
should therefore aim to collect counterevidence when testing hypotheses since fal-
sifying evidence is always conclusive (i.e., observing a single black swan can over-
turn an entire lifetime of positive evidence that “‘all swans are white”). Further, this 
type of observation cannot be countered by positive evidence later on (e.g., no num-
ber of white swans observed after the single black one will make the statement that 
“all swans are white” true). Popper’s prescription for scientific hypothesis testing,  
therefore, is to make the falsification of alternatives—not the generation of positive 
evidence—the primary goal of experimentation. By comparing participants’ behav-
ior to this standard, Wason concluded that PTS is a logical or cognitive failing of our 
intuitive hypothesis testing, and many others have echoed this interpretation (e.g., 
Baron, Beattie, & Hershey, 1988; Devine, Hirt, & Gehrke, 1990; Skov & Sherman, 
1986; Wason & Johnson-Laird, 1972).

Indeed, hints of this perspective appear in the account of PTS suggesting that 
children aim to “demonstrate the correctness” of their hypotheses during scientific 
reasoning tasks (e.g., Dunbar & Klahr, 1989; Inhelder & Piaget, 1958; Klahr et al., 
1993; Kuhn & Phelps, 1982). For example, Klahr and colleagues (1993) gave 3rd- 
and 6th-grade children and adults either a plausible or implausible hypothesis for 
the operation of one input in a simple programming system. If the starting hypothesis 
was plausible, participants tended to go about generating positive evidence of its 

4 While this distinction resembles Schauble et al.’s (1991) notion of “science versus engineering 
models,” Heyman and Dweck’s (1992) account is agnostic about the immediate goal. You could, 
therefore, conceivably have either a “learning” or a “performance” goal while following either a 
“science” or an “engineering” model.
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validity. When the starting hypothesis was implausible, however, participants were 
more likely to set up experiments to discriminate between this initial claim and self-
proposed alternatives. Tellingly, these participants (and young children in particu-
lar) were often “sidetracked” by generating positive evidence for their rival 
hypothesis (Klahr et al., 1993).

In other accounts, PTS is not assumed to be driven by an error or illusion of 
validity but is treated instead as one of several potentially useful inquiry strategies 
available to the learner. The classic form of this argument comes from Klayman and 
Ha’s (1987) analysis of the 2-4-6 task. These authors distinguish between the uses 
of falsification as a goal versus as a method of hypothesis testing. The goal is what 
Popper (1959) prescribes, but the method is not necessary to achieve it. The two are 
confounded in Wason’s task because most participants begin with a hypothesis that 
is more specific than the correct one. As a result, testing negative instances of one’s 
hypothesis (falsification as method) is the only means of generating disconfirming 
evidence (falsification as goal). Klayman and Ha argue that this circumstance is 
neither necessary nor typical in real-world learning. More often, correct hypotheses 
are a “minority phenomenon,” so most tests of positive instances will result in nega-
tive responses (Klayman & Ha, 1987). Given this “rarity,” PTS is argued to be a 
more efficient means of seeking informative disconfirmation than negative tests and 
therefore a reasonable hypothesis testing heuristic.

Klayman and Ha’s account has since been broadly adopted to explain PTS in 
adult learning (see Coenen, Nelson, & Gureckis, 2018), and similar arguments have 
been successfully applied to other instances of PTS beyond the 2-4-6 task (e.g., 
Oaksford & Chater, 1994). Navarro and Perfors (2011) have also extended this 
argument by demonstrating that PTS is a “near-optimal” learning strategy in con-
texts where correct hypotheses are “sparse” and provide further justification for 
learners’ intuitive assumption of sparsity. Importantly, these accounts present PTS 
as a default heuristic approach to hypothesis testing. That is, in the absence of more 
specific information, learners employ PTS because it is cognitively inexpensive and 
often effective (Klayman & Ha, 1987).

In contrast, other accounts have stressed that learners are sensitive to their learn-
ing context and selectively employ PTS. For example, McKenzie and Mikkelsen 
(2000) show that manipulating participants’ beliefs about the rarity of events changes 
the degree to which they appeal to PTS. Furthermore, recent computational work 
finds that intervention choice is best captured by a model employing a mix of PTS 
and expected information gain in a way that is sensitive to task demands. Coenen, 
Rehder, and Gureckis (2015) modeled PTS in causal learning as a preference to 
intervene on variables with the greatest proportion of downstream effects, treating 
each consistent outcome as a point of positive evidence for the hypothesis. Their 
analysis compared this model, and one designed to favor interventions most likely to 
distinguish between competing hypotheses (i.e., with the highest expected informa-
tion gain) to participants’ chosen interventions. They found that a model employing 
a mixture of both strategies best captured the intervention choices of adult causal 
learners. Results also revealed that strategy selection was sensitive to the learning 
context: When the task feedback indicated that one strategy was insufficient for 
distinguishing the true causal structure, or when placed under time pressure, partici-
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pants shifted flexibly between the PTS and information gain models. Thus, the most 
recent research suggests that PTS is not a default heuristic for generating evidence 
but an adaptive and efficient hypothesis-testing strategy employed by context-sensi-
tive learners.

�Other Accounts and Overlapping Evidence

While these two broad categories of accounts—positive tests as a means of generat-
ing outcomes and positive tests as a means of generating evidence—help to orga-
nize much of the existing literature, some prior accounts do not neatly conform to 
either category. For example, a recent “self-teaching” model of active learning 
(Yang, Vong, Yu, & Shafto, 2019) proposes that PTS may be a by-product of the 
way that interventions are chosen. That is, although the ideal learner usually selects 
actions according to expected information gain, selections that deviate from this 
accord with PTS. In this context, PTS is not presented as a mistaken focus (e.g., 
Schauble et al., 1991) or a logical error (e.g., Wason, 1960), but it is also not pre-
sented as an adaptive learning tool (e.g., Coenen et al., 2015).

It is also not always possible to distinguish between generating evidence and 
generating effects within a learner’s behavior. In many cases of causal learning, the 
action expected to maximize the probability of the most likely hypothesis is also 
expected to have the most positive tangible outcomes.5 For example, McCormack, 
Bramley, Frosch, Patrick, and Lagnado (2016) presented children with a three-
component causal system and three competing hypotheses: a common cause (acti-
vating component A causes components B and C to activate) and two causal chains 
(activating A causes B to activate, which causes C to activate, or activating A causes 
C to activate, which causes B to activate). Five- to six-year-olds preferred to repeat-
edly activate component A (the root node in all hypotheses). Although activating A 
is expected to activate all the other components in the system, it is not clear what 
motivates this action. It  accords with “generating effects” theories of PTS, since 
turning on the root node of a system “makes the most things happen,” but also with 
“generating evidence” theories, since this action also tests the greatest proportion of 
downstream connections.

A similar study by Meng, Bramley, and Xu (2018) tested 5- to 7-year-olds on a 
modified version of Coenen et al.’s (2015) task and also found a preference for this 
type of intervention. Although children’s intervention choice was best captured by a 
model incorporating both PTS and information gain (as with adults), this mix was 
heavily skewed toward PTS (i.e., intervening on the node with the greatest propor-
tion of dependent causal links), with the vast majority of children using PTS as their 
primary intervention strategy. Again, we observe evidence that young causal learn-
ers preferentially select positive tests, and again, the source of this preference 
remains unclear.

5 See Bramley, Lagnado, and Speekenbrink (2015) for an in-depth treatment of this overlap 
between expected probability gain and expected utility gain models of intervention.

10  The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal…



schrist3@swarthmore.edu

206

�The Current Theory: Positive Testing and Causal Learning

Rather than explaining PTS as an error, bias, or by-product of our inquiry strategies, 
the current proposal (the Search for Invariance [SI] hypothesis) presents an alterna-
tive account that draws on evidence describing our strengths as self-directed causal 
learners. In contrast to the difficulties documented in the scientific and rule learning 
domains, we excel at exploratory causal learning from an early age.

Considerable evidence shows that children spontaneously and preferentially 
explore what is most likely to be informative, given their current causal beliefs (see 
Schulz, 2012 for a review). Research in causal learning typically presents children 
(3- to 6-year-olds) with evidence about a novel physical device and then allows 
them to interact with it during a period of free play. When the evidence is ambigu-
ous or violates their current theories, children engage in significantly more explora-
tion (Bonawitz, van Schijndel, Friel, & Schulz, 2012; Gweon & Schulz, 2008; 
Schulz & Bonawitz, 2007; Schulz, Standing, & Bonawitz, 2008). They are also 
more likely to take potentially informative actions during this exploration (Lapidow 
& Walker, 2019; Schulz & Bonawitz, 2007; van Schijndel, Visser, van Bers, & 
Raijmakers, 2015).

For example, Cook, Goodman, and Schulz (2011) found that 4- to 5.5-year-olds 
select and even spontaneously invent informative interventions in their exploration 
of an ambiguous causal system. Children were introduced to a toy that played music 
when beads were placed on top of it. They were taught either that all beads caused 
the toy to activate or that only some did while the rest were inert. The beads could 
be snapped together to form two-bead pairs, and a snapped pair of novel beads were 
given to children during their free play. This pair caused the toy to activate, but it 
was impossible to tell from this observation alone whether both beads in the pair 
had the power to activate the toy or only one. Faced with this ambiguity, children in 
the “some-beads” condition took informative actions: pulling the pair apart and try-
ing the beads on the toy in isolation in order to disambiguate their causal status. In 
contrast, children in the “all-beads” condition, for whom the pair was not perceived 
as ambiguous, did not produce these actions. Furthermore, when given an ambigu-
ous pair that was permanently glued together, several children in the “some-beads” 
condition spontaneously turned the pair on its end, conducting informative hypoth-
esis tests to isolate the beads in a way they had never seen demonstrated.

The fact that young children are such voracious and effective self-directed learn-
ers in these contexts raises the possibility that causal learners may have different 
information-seeking goals than those typically assumed in studies of scientific 
experimentation. This view of self-directed causal learners as “intuitive scientists” 
(Brewer & Samarapungavan, 1991; Carey, 1985; Gopnik & Meltzoff, 1997; 
Karmiloff-Smith, 1988) is the impetus for the SI hypothesis: that PTS is an informa-
tive means of assessing causal invariance across the set of examples tested, and thus, 
normatively motivated by the concerns of causal learning. In a causal world of pre-
dominately probabilistic and interdependent relationships, repeated generation and 
investigation of positive instances provide critical information about the reliability 
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and consistency of our causal hypotheses. In other words, PTS is useful and infor-
mative because it allows learners to examine the degree to which a dependency 
between variables continues to hold over time and across contexts. In this way, the 
SI hypothesis suggests that our goals as causal learners might explain our behavior 
as intuitive scientists.

�Causal Invariance and Interventionism

In order to more fully describe the SI hypothesis and establish its relevance for 
interpreting PTS, we will first situate the concept of invariance within theories of 
causality.

Numerous theories of causality and causal explanation include a central idea that 
the function of causal knowledge is to highlight patterns of dependence that will 
generalize to future contexts (see Hitchcock, 2012 for details). A few notable exam-
ples of this include notions of “sensitivity” (Lewis, 1974), “robustness” (Redhead, 
1987), “non-contingency” (Kendler, 2005), “exportability” (Lombrozo & Carey, 
2006), “insensitivity” (Ylikoski & Kuorikoski, 2010), “portability” (Weslake, 
2010), and “transportability” (Pearl & Bareinboim, 2011). Indeed, this sensitivity to 
regularities in variable input is critical for knowledge acquisition in other domains 
as well (e.g., see Wu, Gopnik, Richardson, & Kirkham, 2011).

Although these accounts vary, Sloman’s (2005) description of “invariance” pro-
vides a sense of the common ground among them. He argues that, in every domain, 
aspects that are invariant across instances hold the most valuable information for 
learners. These aspects represent the “stable, consistent, and reliable properties that 
hold across time and across different instantiations of a system” (Sloman, 2005, 
p. 15). Knowledge of invariance therefore allows learners to predict, explain, and 
manipulate events in the world. The concept of invariance is not defined exclu-
sively in terms of causality; for example, recognizing the invariant statistical regu-
larities among syllables within streams of continuous speech supports early language 
learning (e.g., Saffran, Aslin, & Newport, 1996; Saffran, Johnson, Aslin, & Newport, 
1999). However, the causal relations that govern observable events are usually 
highly systematic and generalizable. Causal knowledge is, therefore, a key source 
of invariance, and stable causal principles are often the most reliable basis for infer-
ence and interaction available to us (Sloman, 2005).

Much of Sloman’s account draws on the interventionist perspective on causal 
explanation (e.g., Woodward, 1997, 2003, 2006, 2010), which defines a causal rela-
tionship in terms of the invariance between variables following some change. That 
is: If X causes Y, then intervening to change the value of X would result in a change 
to the value of Y. A causal explanation is thus a true claim describing how some 
factors make a difference to others. To illustrate this, suppose that two variables, X 
and Y, are observed to co-occur. If an intervention changing the value of X maintains 
this correlation (i.e., it leads to a corresponding change in the value of Y), then the 
relationship between X and Y is invariant (it continues to hold), under at least some 
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interventions. This relationship is regarded as causal and can be used as a basis for 
inference and manipulation. To make this idea more concrete, imagine that X is 
fertilizer and Y is plant growth. If the statement “Fertilizer causes plant growth” is 
an accurate causal explanation, we would expect changes to the amount of fertilizer 
(X) to lead to systematic changes in the growth of the plant (Y) (Woodward, 1997).

Note that the interventionist concept of invariance outlined so far defines a causal 
explanation as representing a kind of counterfactual dependence: It indicates how 
changing the factors included in the explanation would lead to a difference in the 
phenomenon being explained (Woodward, 1997, 2003). For example, the hypothe-
sis that “impacting an unyielding surface causes ice to shatter” provides a causal 
explanation for shattering and implies the counterfactual that, in the absence of such 
an impact, shattering would not occur. Causal knowledge allows us not only to rea-
son about how one factor makes a difference to another but also to exploit those 
dependencies in our actions. Interventionism views causal learning and reasoning as 
rooted in our “highly practical interest” in manipulation and control of our environ-
ment (Woodward, 2003, p. 10). As a result, the value of identifying causal relation-
ships is inherently tied to the knowledge of the actions this information supports.

In addition to its role in defining causal relationships, invariance is also an impor-
tant quality expressed by causal relationships. While the former captures the conti-
nuity of causal relationships when related variables change, the latter emphasizes 
the “stability” of those relationships across contexts and conditions. That is, X is a 
cause of Y if and only if an intervention on X changes the value of Y in at least some 
background circumstances b. These “background circumstances” are aspects of a 
situation that are not explicitly represented by X or Y but that are critical to the 
meaning and commitments of causal explanations (Blanchard, Vasilyeva, & 
Lombrozo, 2018). For example, “Fertilizer causes plant growth” is only true if the 
plant is also getting water, sunlight, and oxygen. These are some of the background 
circumstances of the causal relationship between fertilizer and plant growth; these 
are both critically important to our understanding of the causal claim and not explic-
itly stated as part of the relation.

Of course, for any causal relationship, there are changes to both the related vari-
ables and the background conditions under which the relationship will not hold. The 
interventionist definition of causality only requires a relationship to hold under at 
least some conditions (e.g., fertilizer is a cause of plant growth, because of the 
dependence between them, even though this relationship will not hold if the plant is 
kept in the dark or the fertilizer is infested with harmful bugs). Our notion of invari-
ance includes our understanding of these conditions. Vasilyeva and colleagues 
(2018) explain this “stability” component of invariance as a combination of 
“breadth,” or generality (the range of background circumstances in which the gen-
eralization holds) and “guidance,” or accuracy (the support a causal explanation 
provides for generalization to new circumstances). This dual consideration reveals 
the importance that causal learners place both on identifying causal relationships 
that are most reliable and knowing the contexts in which they may be relied on. 
Empirical evidence supporting interventionism’s role for invariance in our causal 
thinking comes primarily from studies looking at highly similar concepts, such as 
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“explanation generality” (e.g., Friedman, 1974; Gelman, Star, & Flukes, 2002; 
Johnston, Sheskin, Johnson, & Keil, 2018; Kitcher, 1981; Strevens, 2009; Walker, 
Lombrozo, Legare, & Gopnik, 2014). Very recently, computational (Morris et al., 
2018) and behavioral (Vasilyeva et al., 2018) studies have begun to look explicitly 
at interventionist invariance and find that it both reflects and influences our causal 
judgments.

According to interventionism then, the purpose of causal learning lies in acquir-
ing representations of counterfactual dependence between variables that generalize 
to guide future action and inference. However, learners are almost never in an epis-
temic position to form exceptionless generalizations, which would require specify-
ing every relevant contributing and enabling factor involved in causing an event. 
Furthermore, such a specific explanation would also be severely limited in useful-
ness as it would be applicable to fewer new situations than a less complete account. 
Instead, causal learners acquire causal explanations that are incomplete generaliza-
tions and augment them with evaluations of their invariance over time and across 
contexts. Given this, it makes sense for causal learners to value information about 
invariance and to seek to uncover it through the exploration of multiple examples.6 
This is the foundation of the Search for Invariance (SI) hypothesis.

�The Search for Invariance (SI) Hypothesis

The SI hypothesis proposes that the positive testing strategy (PTS) may provide a 
means of assessing this critical characteristic of causal invariance during explora-
tion and hypothesis testing. Since no causal relationship is without exceptions or 
holds in all circumstances, knowing the extent and contexts in which relationships 
are invariant is critical for causal knowledge to guide action and reasoning. It is 
therefore incumbent upon causal learners to determine the invariance of putative 
causal relationships by asking, for example, the following: Is this dependency reli-
able? Is it generalizable? And, if so, with what probability and in what contexts? 
Activating the hypothesized causal variable (or examining cases in which it has 
already been activated) allows the learner to assess whether the effect behaves as 
hypothesized in the current context. Repeating these interventions provides evi-
dence for how consistently and extensively this relationship holds. Negative tests—
while assessing whether an alternative cause might also bring about the effect in the 
current context—can  not, by definition, provide this information. Thus, positive 
tests are potentially informative for self-directed learners, regardless of their expec-
tations about the sparsity or rarity of causal relationships, by providing evidence 
about their relative invariance.

6 See also Chaps 3 and 7, for other instances of how the observation of multiple examples influ-
ences how learners generalize their knowledge.
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To further illustrate this claim, the following sections will return to three key 
examples of PTS to demonstrate how reinterpreting these results in terms of the 
learner’s Search for Invariance provides a novel and more complete account of these 
behaviors.

�As an Alternative to “Engineering Desirable Outcomes”

Tschirgi (1980) provides an excellent example of how the SI hypothesis reframes 
the tendency to conduct positive tests to bring about desirable outcomes. Recall that 
when asked to select one of three actions to prove that the type of sweetener was the 
reason that the cake was good and that the types of fat and flour did not matter, the 
majority of participants chose to HOLD the suspected causal variable and change 
the others rather than VARY only the suspected cause (Tschirgi, 1980).

From the perspective of the SI hypothesis, the HOLD option presents a valuable 
test of the circumstances under which the suspected causal dependency holds. 
Baking another cake in which the type of sweetener is kept constant, and all the 
other ingredients are changed, allows the learner to assess whether this relationship 
is invariant under different background circumstances.7 Another example of this 
kind of hypothesis testing in scientific reasoning comes from Zimmerman and 
Glaser (2001), who asked 6th graders to test the claim that coffee grounds are good 
for plants. The authors found that the majority of students designed a series of posi-
tive tests; that is, they checked the outcome of adding coffee grounds to a variety of 
different plants, thereby testing the hypothesized effect of this intervention across a 
variety of background conditions.

On the other hand, it might be argued that assessing invariance is illogical in a 
situation in which the causal status of the hypothesized relationship has not yet been 
conclusively established. Zimmerman (2007) makes precisely this objection, 
explaining that the participants in Tschirgi (1980) failed to first confirm the claim 
that the sweetener produces good cake in a controlled manner. However, it is not 
clear that this confirmation is necessary. The hypothesis presented in the task makes 
two distinct claims: (1) Good cake is causally dependent on the sweetener, and (2) 
good cake is causally independent of the type of flour and fat. Tschirgi sees (1) as 
the only claim participants are being asked to test. However, there is nothing to stop 
participants from choosing to evaluate (2), which would make HOLD, and not 
VARY, the disconfirming test. This duality means that HOLD is just as valid a test 
of the hypothesis stated in the problem text as VARY.  Further, HOLD has the 
additional attraction of also assessing the invariance of the causal relationship 
between the sweetener and good cake that was singled out by the prompt.8

7 In fact, since the scenarios only contained two values for each variable, the HOLD option tests 
invariance for all possible kinds (though not combinations) of other factors.
8 This is not the only study in the scientific reasoning literature with such ambiguities. Assumptions 
about parameters—the number of causal variables and whether their effects are independent or 
interdependent, probabilistic, or deterministic—are regularly made by experimenters but not con-
veyed to participants or considered when evaluating their behavior. Ongoing work in our lab aims 
to remove these ambiguities to better assess children’s intuitive experimentation.
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�As an Alternative to “Seeking Confirmatory Evidence”

The SI hypothesis also provides an explanation for participants’ repeated testing of 
instances that are consistent with their current hypothesis, as seen in Wason’s 2-4-6 
task. Again, learners are testing the invariance of their hypothesized rule, but it is 
not the same quality of invariance as the one tested in the previous example. In that 
case, the learner’s goal was to assess the range of background circumstances in 
which a causal claim holds, what Vasilyeva and colleagues (2018) call “breadth.” In 
contrast, explorations in the Wason task are more concerned with “guidance,” the 
accuracy of a causal hypothesis for developing expectations about novel circum-
stances. By checking multiple sets that are all consistent with their current hypoth-
esis (e.g., “increasing even numbers”) across distinct instances, learners can 
determine whether the rule invariantly identifies sets with the target property. 
Further evidence for this interpretation is what Klayman and Ha (1987) call limit 
testing: Within their repeated positive tests, participants in the 2-4-6 task commonly 
select extreme or unusual instances of their hypothesized rule. For example, a par-
ticipant considering the hypothesis “increasing even numbers” might choose to test 
the set: −2, 0, 2 (Klayman, 1995; Klayman & Ha, 1987).

Again, it might be objected that the current hypothesis has not yet been verified. 
It is true that evidence of the invariance of “increasing even numbers” does not rule 
out the possibility that the rule is actually “increasing numbers.” However, if any 
instance of the “increasing even numbers” rule ever fails one of these tests of invari-
ance, the learner will know that neither hypothesis is correct. If learners were sim-
ply hoping to generate confirmatory evidence or produce affirmative responses from 
the experimenter, then we would not expect them to preferentially test their hypoth-
eses at the regions of highest uncertainty (i.e., at the limits). Instead, these investiga-
tions serve as a stress test of the invariance of their hypothesis, even at its boundaries.

Beyond Evidence of Sufficiency

Another likely objection to the SI hypothesis is to claim that invariance is not mean-
ingfully distinguishable from sufficiency. A sufficient cause is adequate, but not 
required, for bringing about an effect (Klayman & Ha, 1987), and researchers have 
previously proposed the use of sufficient hypotheses as an explanation of PTS. These 
accounts tend to emphasize pragmatic motivations (e.g., a desire to achieve or avoid 
specific outcomes) over epistemic ones. For example, Friedrich (1993) suggests that 
human cognition, which was shaped by a drive to ensure survival, is better suited to 
identifying sufficient mechanisms than determining truth. Similarly, Schwartz 
(1982) explains PTS as a kind of error avoidance, motivated in part by the condi-
tions of reward and reinforcement. In other words, once the learner identifies a suf-
ficient cause, they may feel no compulsion to determine whether that condition is 
also necessary (Nickerson, 1998).

It is difficult to distinguish the SI hypothesis from this alternative account 
since the occurrence of PTS does not, in itself, indicate the motivation behind it. 
For example, in the 2-4-6 task, selecting sets that are sufficient (i.e., have a high 
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probability of producing an affirmative response based on what is currently 
known) and selecting sets that test the invariance of the hypothesized rule can 
lead to the same actions. Despite this challenge, we maintain that invariance is  
not reducable to sufficiency.

To explain this position, it is essential first to recognize that causal inference and 
rule-based inference involve different notions of sufficiency. Rule learning typically 
assumes that there is only one correct rule, which must be both sufficient and neces-
sary (Klayman & Ha, 1987). Further, these conditions are defined in terms of propo-
sitional logic (see Johnson-Laird & Byrne, 2002). For example, in the 2-4-6 task, 
any set that follows the correct rule will have the target property (the rule is suffi-
cient), and all sets that have the target property will follow the rule (the rule is neces-
sary). Causation, on the other hand, does not follow the rules of standard inference, 
and causal logic involves assumptions that cannot be captured by the principles of 
propositional logic (see Sloman & Lagnado, 2005, 2015).

To illustrate this difference, consider these two pairs of hypotheses: (a) sets of 
numbers increasing by two have the target property and (b) sets of increasing num-
bers have the target property as opposed to (c) sex causes pregnancy and (d) embryo 
fertilization causes pregnancy. Both (a) and (c) are cases in which the antecedents 
(“increasing by two” and “sex”) are sufficient but not necessary for their conse-
quents (“having the target property” and “pregnancy”). Sets of numbers increasing 
by two will be in the target set, and sex will (under certain background conditions) be 
a cause of pregnancy. However, the truth of hypotheses (b) and (d) accounts for why 
the antecedents of (a) and (c) bring about their consequents, making them unneces-
sary. Sex is not necessary for pregnancy (which can also occur through in vitro fer-
tilization), and increasing by two is not necessary for a set to have the target property 
(as all sets of numbers increasing by two are also sets of increasing numbers).

However, there is also a critical difference here: (a) and (b) are hypotheses about 
rules, while (c) and (d) are hypotheses about causes. The domain of rule discovery 
requires that there be only one correct rule that is both necessary and sufficient for 
the target property. In contrast, the domain of causal reasoning allows for multiple 
possible causes to exist simultaneously. As a result, (b) being true means (a) cannot 
be the correct rule, but (d) being true does not mean that (c) cannot be a correct 
causal explanation. Put another way, the hypothesis that “the rule for the target 
property is numbers increasing by two” is incorrect, but the hypothesis that “sex is 
a cause of pregnancy” is not. The difference between propositional and causal logic 
means that the impact of one statement’s truth value on another’s differs between 
the domains of rule and causal learning. Lack of necessity makes a rule false, but it 
does not make a cause false. That said, it does make it less invariant.

Judgments of necessity and sufficiency are critical to our reasoning in the causal 
domain, but in a way that is unique to the domain. Necessity captures our intuition 
that causal variables ought to make a difference to outcomes: We judge dropping an 
ice cube on the ground as the cause of it shattering since, in the absence of the first 
event, the second would not have occurred. Indeed, a wealth of evidence shows such 
evaluations are central in our causal judgments (e.g., Gerstenberg, Goodman, 
Lagnado, & Tenenbaum, 2014; Gerstenberg, Peterson, Goodman, Lagnado, & 
Tenenbaum, 2017; Icard, Kominsky, & Knobe, 2017; Morris et al., 2018; Wells & 
Gavanski, 1989).
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Causal sufficiency is also intertwined with the notion of necessity. For example, 
when we credit one event (e.g., dropping an ice cube) as the difference-making 
cause of another event (e.g., shattering), we understand that the necessity of the first 
event for the occurrence of the second is dependent on the context in which both 
take place. That is, dropping the ice cube will only cause it to shatter under certain 
background conditions (e.g., gravity). We also understand that shattering might 
occur in other cases, even in the absence of dropping (e.g., if someone hits the ice 
cube with a hammer).

Thus, unlike a rule, a single causal variable is never sufficient or necessary for 
bringing about an effect in and of itself (Mackie, 1974). In causal reasoning, these 
qualities exist only given certain background conditions in which the occurrence of 
the variable makes a difference to the outcome. Our knowledge of invariance, of 
what these conditions are and the degree to which they hold, captures this. It thereby 
requires consideration of necessity and cannot be reduced to assessment or employ-
ment of sufficiency.

�As an Account of Previously Ambiguous Evidence

Finally, the SI hypothesis also provides a consistent interpretation of learners’ ten-
dency to intervene on the root node in McCormack et al. (2016) and Meng et al. 
(2018).9 Recall that according to interventionism, the commitments a causal hypoth-
esis makes about the potential for action and manipulation are central to our reason-
ing about it. In fact, according to Woodward, the difference between competing 
causal models is understood in terms of the difference in the predicted outcomes of 
interventions (2006, p. 61). This suggests that a causal learner might not feel the 
need to distinguish between causal hypotheses that make the same predictions about 
the majority or more salient interventions on a system.

The problems used in McCormack et al. (2016) and Meng et al. (2018) place 
participants in precisely this situation: The competing possible causal structures all 
indicate the same variable as the root node of the system. Activating this node, there-
fore, cannot distinguish between the competing hypotheses as the expected outcome 
is the same in each. However, considered in light of the SI hypothesis, children’s 
preference for this action is not necessarily uninformative. Precisely because all the 
hypotheses predict that intervention on this variable will activate all the other vari-
ables in the system, the interventionist difference-making perspective may not 
meaningfully distinguish between these possibilities. Given this, the primary con-
cern for a causal learner would be to assess the degree to which manipulation of this 
putative root cause reliably leads to its predicted effects, rather than to disambiguate 
exactly how it does so, which fits the behavior seen in the task.

9 As a reminder, the “root node” is the starting point for the causal model of the system. Here, the 
structure is either a common cause (activating component A causes components B and C to acti-
vate) or a causal chain (activating A causes B to activate, which causes C to activate, etc.), meaning 
component A is the root node in both cases.
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�Conclusion: Relationship to Truth

The claim that we are “intuitive scientists” in our exploratory learning is well estab-
lished as part of the account of human inquiry (Coenen et al., 2018). However, the 
fact that self-directed learners often choose to conduct repeated positive tests of 
their hypotheses rather than (apparently) more informative interventions has histori-
cally complicated this claim. Repeated positive testing is characteristic of explor-
atory behavior across development, yet it would seem to be at odds with the aims of 
self-directed information seeking. In this chapter, we introduced a novel account of 
this behavior—the Search for Invariance (SI) hypothesis—which suggests that 
seeking multiple positive examples may in fact serve the information-seeking goals 
of causal learning.

To summarize, the SI hypothesis draws on the interventionist framework of 
causal reasoning, which suggests that causal learners are concerned with the invari-
ance of candidate hypotheses. In a probabilistic and interdependent causal world, 
our primary goal is to determine whether (and in what contexts) our current hypoth-
esis provides an accurate basis for inference and intervention—not to disconfirm 
alternatives. By recognizing the central role of invariance in causal learning, posi-
tive testing may be reinterpreted as a rational and necessary information-seeking 
strategy. The SI hypothesis therefore provides an explanation of PTS that accords 
with theories that portray self-directed learning as intuitive science. Of course, 
empirical work is needed to establish the importance of invariance to learning and 
to specify how learners form estimates of invariance from the multiple examples 
they generate, what type of examples are needed, and how many. By providing a 
novel approach to PTS, we hope that the SI hypothesis will serve as a promising 
theoretical foundation to guide future work.

That said, by aligning PTS with theories of the intuitive experimentation, it is 
also important to acknowledge that the “learner-as-scientist” approach typically 
emphasizes increasing the accuracy of current knowledge as the primary goal of 
self-directed exploration. Indeed, Gopnik and colleagues (e.g., Gopnik, 1998, 2000; 
Gopnik & Walker, 2013) have variously asserted that the raison d’etre of our self-
directed causal learning is to form veridical causal models of the world. According 
to this view, learning as an “intuitive scientist” ought to be characterized by move-
ment toward more accurate knowledge—and the proposal that causal learners are 
more concerned with assessing the invariance of a causal explanation than whether 
it is more accurate than alternatives may seem initially incompatible.

However, recall that the interventionist account of causality is inherently tied to 
action. As causal learners, we are concerned with refining the accuracy of our causal 
models but only insofar as this meaningfully improves our ability to predict, explain, 
and manipulate the world. These goals do not require absolute accuracy; they 
require reliability. The SI hypothesis does not aim to imply that learners are disin-
terested in evaluating the truth of competing hypotheses but that the concerns and 
priorities of causal learning will determine which aspects of these hypotheses are 
most informative to evaluate.
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Chapter 11
Multiple Exemplars of Relations

Stella Christie

Abstract  My mom, mother rabbit, mother country—these are all multiple 
exemplars of the relational concept “mother.” How do we come to understand that 
these are exemplars of the same concept? This chapter explains the mechanisms for 
learning about multiple exemplars, particularly multiple exemplars of relations. I 
discuss why perceiving relational exemplars is difficult, and how structure mapping 
theory (Gentner, Cogn Sci Multidiscip J 7(2):155–170, 1983) provides precise 
learning mechanisms that learners use to understand relational exemplars. Given the 
scope of the problems and solutions, a new area of research emerges: social rela-
tional learning. The social world is fundamentally characterized by relations such 
as kinships, friendships, alliances, and social hierarchies; these relations govern 
behavior and have far-reaching consequences (friends help; foes do not). 
Understanding social learning as a relational learning problem gives insight to how 
learners acquire complex knowledge about their social world—such as differentiat-
ing various exemplars of friends versus foes.

You see a picture of four women. Whom does this picture represent? Are they a 
quartet of musicians, are they mothers, or are they (merely) a group of unrelated 
women? In other words, what sort of exemplar does this picture represent? To 
decide this, you look for certain cues: Are they carrying musical instruments? Are 
they pushing strollers? You look for such cues as markers of potential relations, 
knowing full well that such cues can mislead you: many mothers will not be pushing 
a stroller and many non-mothers may well be pushing one. Indeed, recognizing a 
mother on a picture cannot be reduced to checking one surface feature because 
being a mother is a relational concept. As you hold the picture in your hand, you 
focus on some cues and discard others. Many cues invariably escape your attention: 
Did you notice that each woman holds a piece of paper or a cell phone? Do they 
display tickets? Are the women passengers? Consciously or not, you focus on some 
potential relations and ignore others. Why and why the mind deals with exemplars 
of relations is the focus of this chapter.
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�Exemplars of Relations—Unique Challenges

Learning about and from multiple exemplars of relations has a unique complexity 
and set of challenges, which are unlike those encountered in non-relational con-
texts. Potential relations constantly compete for our attention with surface features 
(e.g., perhaps the women on the picture are wearing blue jeans). We may focus our 
attention on one candidate relation and ignore another, but even before we do that, 
we must ask what relations have been overlooked. Were they overlooked because 
they were not salient enough or, perhaps, because the learner did not even know the 
relation? Should we assume that a relation must be known before it can be recog-
nized? If not, what allows a previously unknown relation to spring out of a set of 
(two or twenty-four) exemplars? Indeed, how many exemplars need one see before 
recognizing a given relation?

These and other questions, which define the landscape of learning from rela-
tional exemplars, are the subject of this chapter. I adopt the theory of structural 
alignment, which posits that recognizing relations is aided by the presence of 
alignable surface features. After reviewing the problems of recognizing multi-
ple relational exemplars and explaining how structural alignment solves them, I 
also discuss an example domain where much of this material finds an interesting 
manifestation: the social world, which is woven from an intricate network of 
relations.

�Why Is It Difficult to Perceive Multiple Exemplars 
of Relations?

�Not Knowing the Relations

Learners may not be able to perceive the sameness of two relations because they 
do not have the requisite relational concept in the first place. This is true both 
among novice undergraduates who do not yet possess relational concepts such as 
idempotent or chirality and for 2-year-olds who do not yet know the relational 
concept of left-right, passenger, or even uncle (Keil, 1998; Waxman & Hall, 
1993). These 2-year-olds will not be able to recognize the bearded man on a bus 
and the tall woman on a train as multiple exemplars of the same concept—a 
passenger.

One dominant solution to this type of problem is to caption multiple exemplars 
of relations with relational labels. Relational labels name relational concepts—such 
as idempotent or passenger—making them easy to demarcate, reify, and remember 
(Gentner & Christie, 2010). Relational labels function like a gift wrap: It bestows on 
a nondescript (or even unknown) item a special status, making it more portable and 
transferable. Likewise, a labeled concept can be more easily recalled and used in 
diverse contexts, for example, for a passenger of a bus or a train alike. A large body 
of evidence shows that relational labels are instrumental for learning relational 
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concepts. For example, Casasola (2005) has shown that 18-month-olds who heard 
the spatial relational term on were better able to recognize multiple exemplars of the 
support relation than were those who heard general labels. This study illustrates that 
learning requires hearing relational labels specifically, not just hearing language per 
se (see also Chap. 3).

�The Relations Are Known, but the Relational Similarity Is Not 
Salient

At other times, learners may know the relational concept but still have difficulty 
recognizing new exemplars of the relation. To appreciate this point, let us turn to the 
simplest relation: the identity relation—recognizing that in an O-O sample, the one 
O is the same as the other O. Several studies have shown that the concept of identity, 
or at least the ability to recognize identical repetition, is one of the most fundamen-
tal cognitive concepts. For example, 7-month-olds can learn algebraic rules more 
easily from patterns that contain identical repetition (ABB or AAB) than from other 
patterns (ABA) (Marcus, Vijayan, Rao, & Vishton, 1999). Newborns show a spe-
cific and unique brain activation in the superior temporal and left inferior frontal 
regions when hearing patterns that involve the identity relation, which does not 
occur when equally complex patterns without identity relations are played (Gervain, 
Berent, & Werker, 2012).

Despite an early ability to sense the identity relation (or at least sensing the 
match repetition), infants do not spontaneously recognize that AA is another exem-
plar of OO. Seven- and nine-month-olds who were habituated to an exemplar of the 
identity relation [e.g., fish-fish] did not spontaneously recognize a new identity rela-
tion [mouse-mouse] test event as familiar; their looking time did not differ between 
the new identity relation [mouse-mouse] and a nonidentity relation [mouse-dog] 
test event (Ferry, Hespos, & Gentner, 2015; see also Chap. 5). In a triad version of 
this task, 2- and 3-year-olds could not match OO (e.g., square-square) to AA (e.g., 
circle-circle, choosing randomly between AA (circle-circle) and BC (triangle-
pentagon) (Christie & Gentner, 2014). For whatever reason, the relational similarity 
across these examples of the identity relation is not salient to young children, even 
though they likely possess the relational concept identity.

This problem is compounded when another kind of similarity—an object or a 
feature similarity—is in competition with the relational one. When the triad task is 
changed to match OO to either AA (relational match) or OC (object match) (see 
Fig. 11.1), even 4-year-olds overwhelmingly choose the OC object match (Christie 
& Gentner, 2007). This is not a wrong choice per se, but it shows that under this 
circumstance, 4-year-olds are even less likely to recognize that AA and OO are 
multiple exemplars of the same relation. This tension between relational and object 
matches is robust in development. Children tend to undergo a relational shift some-
time during the preschool years (Gentner, 1988; Gentner & Rattermann, 1991; 
Halford, 1987, 1992) in that they start out focusing on object matches and only later 
in development focus more on relational matches.
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�The Solution: Structural Alignment

The dominant solution to the problem of noticing relational commonality is the 
process of structure mapping. Structure mapping theory (SMT, Gentner, 1983) pos-
its that when learners can align two events, they are more likely to notice the com-
mon structure or relations between them, above and beyond noticing feature 
similarities. For example, 4-year-olds who saw an exemplar of a bicycle were more 
likely to liken the bicycle with a pair of glasses (because they share round shapes) 
than to a skateboard (relational commonality; both are vehicles). However, when 
the 4-year-olds had a chance to compare a bicycle and a tricycle, they were more 
likely to liken these to the skateboard (Gentner & Namy, 1999; Namy & Gentner, 
2002). That is, the alignment process highlights the relational commonality—some-
thing that may not be very salient to the learners prior to the comparison.

Learning from multiple exemplars is the essence of SMT.  Structure mapping 
takes one kind of commonality among multiple exemplars (their common surface 
features) to enable the learning of another type of commonality among exemplars—
the relational commonality. In the example above, the initial surface commonality 
was the round shape of the bicycle and tricycle wheels, and the learning outcome 
was their common structure (vehicles). Consequently, we should expect that after 
having abstracted the common relation vehicle, learners will be able to notice other 
exemplars of this relation. Indeed, children in the Namy and Gentner (2002) now 
recognized that a skateboard, and not glasses, was the one that shares commonality 
with the bicycle and tricycle.

Recall that the problem we want to solve—how to recognize multiple exemplars 
of the same relation—involves two main difficulties. One is that learners may not 
know the relation in the first place; the other is that learners may know the relation 
but still fail to perceive the relational similarity across the examples. This may hap-
pen because another kind of similarity—feature similarity or object matches—can 
be more salient than the relational one. Structure mapping, or the alignment of 
exemplars, addresses both difficulties.

Fig. 11.1  Object versus 
relational matches
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Christie and Gentner (2010) asked if aligning multiple exemplars can result in 
learning completely new relations. This is an instance of the first difficulty outlined 
above—not knowing the relation. In this study, we presented arbitrary new relations 
that are not lexicalized in English in a simple way, for example, black on top, white 
on bottom (see Fig. 11.2). Unlike the vehicle example (Namy & Gentner, 2002) in 
which 4-year-olds may already know about vehicles as a category, it is safe to 
assume that the relations in this study were unfamiliar to the 4-year-old subjects. 
The question was whether aligning multiple exemplars would result in learning 
about the novel relation. If so, children should recognize other exemplars of the 
relation.

To test this, 4-year-olds in the solo condition saw one exemplar of black on top, 
white on bottom (e.g., a black dog above a white dog), while those in the compari-
son condition saw two exemplars (e.g., a black dog above a white dog and a black 
cat above a white cat; Fig. 11.2). The exemplars were labeled with a novel label 
such as pepi. At test, children had to extend this novel label to one of two choices: a 
picture card depicting an object match (a black dog next to a black cat) and a card 

Fig. 11.2  A sample of novel, arbitrary relations for 4-year-olds (black on top, white at the bot-
tom). Children were tested either in the solo (one exemplar) or comparison (two exemplars side by 
side); both receive the same test, in which they can choose to extend the given novel label either to 
the object match exemplar or the relational match exemplar
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depicting the relational match (a black bird on top and a white bird at bottom). 
Notice that either choice relies on recognizing some similarity across the multiple 
exemplars: either a similarity of the shape/features across the examples (the object 
match) or a multiple exemplar of the relation (relational match). There are no “right” 
or “wrong” answers in these test trials; rather, we wanted to see if children have a 
baseline preference for either the object or relational match and whether such a 
preference could be shifted by the act of comparing and aligning two exemplars.

As expected from prior results, children in the solo condition overwhelmingly 
chose the object match over the relational match when they extended the novel 
label. They spontaneously recognized one kind of multiple exemplar—the object 
match—but not the relational exemplar. Amazingly, this perception changed when 
they were given an opportunity to compare two exemplars (such as [black dog, 
white dog] and [black cat, white cat]). After such a comparison, 4-year-olds were 
more likely to extend the novel label to the relational match. This is notable particu-
larly because in the comparison condition, the feature similarity choice (a black dog 
next to a black cat) contained object matches of both standards. Had children per-
sisted in only noticing feature commonalities, they should have been even more 
likely to pick the object match in the comparison group.

Instead, as predicted by structure mapping, comparison—more precisely align-
ing two exemplars—resulted in learners’ noticing common relations. We argue that 
the alignment is crucial; it is not just a matter of more exemplars because in the 
same study, another group of 4-year-olds saw two exemplars sequentially (thus 
would have had difficulty aligning them) and chose the object match. The sequential 
group’s behavior did not differ from the solo condition, even though they were 
shown the same two exemplars as the comparison group. I should note that the 
exemplars in the sequential condition were presented one after another without any 
delay. However, because these exemplars contained novel, relatively difficult rela-
tions, children likely were not able to hold them in memory and align them. In 
contrast, children in the comparison condition saw the two exemplars in a spatial 
juxtaposition which, as seen in Fig. 11.2, we arranged to be optimally aligned. Thus, 
without the convenient spatial arrangement, children did not appear to have reaped 
the benefit of comparison and chose the object match instead. These results support 
our argument that alignment across examples is critical.

We should not confuse the particulars of the methodology—concurrent, sequen-
tial, or any other—with the essential ingredient that ushers comparison: alignment. 
More sophisticated learners who are able to hold exemplars in memory and align 
them on their own should be able to notice relational commonalities. For example, 
most adults will have no difficulty in recognizing our new relations [e.g., black on 
top, white on bottom] after seeing exemplars sequentially. But when the exemplars 
are sufficiently difficult, even adults should be unable to align them and, conse-
quently, miss relational commonalities. To wit, Loewenstein, Thompson, and 
Gentner (1999) showed motivated Kellogg MBA students example scenarios of the 
contingency principle. Those who compared two scenarios simultaneously (com-
parison group) were 50% better than those who read the scenarios sequentially in 
using the contingency principle in a later negotiation test.
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Comparison resulting in relational learning also overcomes the second difficulty 
we noted: that children may already know the relations, but the relational similarity 
is not salient. For example, in a Relational Match to Sample Task (RMTS), 2- and 
3-year-olds who were tested with the basic identity relation (standard AA, choose 
between BB and CD) chose at chance. But when they were given an opportunity to 
align—compare standards AA and EE and then choose either BB or CD—they rec-
ognized the other relational exemplar and chose BB as the match to the standards 
(Christie, 2010).

�Comparing What? Similarity of Exemplars

Thus far, I have discussed how comparing multiple exemplars results in noticing 
relational commonalities. A natural follow-up question is what kind of exemplars 
must be compared to effect relational learning. Suppose that instead of comparing 
[black dog, white dog] and [black cat, white cat] as in the original study, 4-year-olds 
compared [black dog, white dog] and another identical card [black dog, white dog]. 
Would this comparison also produce relational learning? No. In pilot data, we found 
that when 4-year-olds compared two identical picture cards from the Christie and 
Gentner (2010) study, they also chose the object match and not the relational match. 
Namy, Gentner, and Clepper (2007) found that while comparing similar (but dis-
criminable) exemplars of objects helped children to classify the objects based on 
relational similarity, those who compared nearly identical exemplars classified 
objects based on perceptual commonality.

The implication is that one cannot just compare any exemplars and expect align-
ment and structure mapping to take place. The similarity of the exemplars matters: 
Comparing too similar a set of exemplars does not result in learning, while a set of 
exemplars that is too diverse is more challenging to align. Because there are multi-
ple senses of similarity (see Markman & Gentner, 1993) for a classic view on simi-
larity), here I refer to surface similarity—similarity based on surface features such 
as shapes or colors (for object sets). With this notion of similarity, the question of 
how similar exemplars must be to produce relational learning has a predictably 
ambiguous answer: it depends. There is some optimal level of similarity, or at least 
a range of similarity, that is optimal for relational learning. What this optimal 
similarity is depends on the domain to be learned, as well as the learners’ prior 
knowledge.

For example, Jee et  al. (2014) asked what similarity comparison allows adult 
learners to learn about the categorization of complex geographical faults. They 
found that overall, participants were better at correctly identifying faults if they 
contrasted similar faults than if they contrasted dissimilar faults. Interestingly, while 
contrasting similar faults worked better overall, the learning outcome also depended 
on learners’ background knowledge. Participants with some geoscience background 
knowledge (have taken at least one geoscience course in high school or college) 
benefitted more from the high-similarity comparison than did participants with no 
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background knowledge. That is, for some of the novice learners, the high-similarity 
comparison as given in this experiment did not yield a learning benefit. It is possible 
that for these learners, the high similarity was not high enough.

�How Many Exemplars to Compare?

In much of the evidence discussed above, the comparison process specifically 
involves two exemplars. For example, when 4-year-olds learned novel relations 
(Christie & Gentner, 2010) or when they learned to notice common identity rela-
tions in the RMTS task (Christie, 2010), both involved aligning precisely two exam-
ples. Two is of course the minimum number of exemplars needed for comparison, 
but it may also be optimal in setups where learners are explicitly invited to compare. 
Two exemplars allow a better possibility of going back and forth between the exem-
plars, encouraging comparison. There is evidence from an infants’ eye tracking 
study (Oakes & Ribar, 2005) that 4-month-old infants who look back and forth 
between two events during habituation were better able to categorize basic entities 
such as cats and dogs. The study did not test three or more habituation events side 
by side, but my prediction is that with three items, infants would not engage in 
explicit alignment.

Two is not a magic number, however. A very different number of distinct exem-
plars—essentially, the more the better—was found to be optimal in a study of learn-
ing nonadjacent dependency in grammar. The ability to recognize a dependency 
between syntactic elements separated by other constituents—for example, is …-ing 
in English phrases like is running or is sitting—plays a crucial role in language 
learning; it also represents an interesting case of relational learning. An extensive 
body of work by Gomez and colleagues (see Sandoval & Gomez, 2013 for review) 
documents nonadjacent dependency learning. The common paradigm in this con-
text is to use artificial languages and ask under what conditions learners can master 
grammar rules that govern nonadjacent dependency.

In Gomez (2002) (see Chaps. 2 and 4, for a discussion of statistical learning), 
adults and 18-month-olds were exposed to three-element strings (e.g., pel-wadim-
rud (aXd)) drawn from one of two artificial languages (L1 or L2). L1 contained 
one kind of nonadjacent dependencies (aXd, bXe), and L2 contained another kind 
(aXe, bXf). After hearing multiple instances of these strings, learners had to dis-
tinguish which nonadjacent dependency was correct in the language of their train-
ing. Learners’ training samples included X’s (the interposed elements) drawn from 
different—larger or smaller—sets: Each learner’s sample had 2, 6, 12, or 24 dis-
tinct X’s. The authors found that both adults and 18-month-olds learned the non-
adjacent dependencies only from the most variable learning condition (with 24 
distinct X’s). Since they did not test richer sets of X’s, we may speculate that in 
this case, even greater variability in the sample might further improve relational 
learning. Mirroring the remarks concerning similarity and comparison, here too 
learners’ prior knowledge may impact the optimal sample variability. As an 
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example, Gomez and Gerken (2000) replicated the variability success with 
15-month-olds but found that 12-month-olds failed to learn nonadjacent depen-
dencies under the same learning conditions.

How to explain the apparent need for a large number of exemplars in Gomez’s 
study? It is possible that the learning here is implicit rather than explicit. Learners 
were not told to compare exemplars, so rather than actively juxtaposing and align-
ing the exemplars—which works best with two exemplars—they needed several 
examples before noticing their commonalities. Two types of studies can be done to 
verify this hypothesis. First, we can repeat Gomez’s setup with explicit instructions 
to compare: Give participants aX1b and aX2b and ask them to identify similarities 
across these 2 (or 6, 12, 24) examples. If explicit alignment is optimal with 2, we 
should now expect the variability = 2 condition to produce better learning. Second, 
we can test whether there are differences between learning from 24 X’s sequentially 
(as in the original study) versus 12 pairs of X’s. While there are no explicit instruc-
tions to compare here, if alignment can happen better with 2 exemplars, then we 
expect learning from 12 pairs of exemplars to be equally good as learning from 24 
individual items.

One notable difference between explicit and implicit comparison is the speed of 
learning. Explicit alignment with two exemplars usually gives immediate results of 
relational abstraction. For example, in the learning novel relations study (Christie & 
Gentner, 2010), 4-year-olds who compared two examples [black dog on top, white 
dog at bottom] and [black cat on top, white cat at bottom] immediately noticed the 
relational commonalities, choosing the relational match option. There were eight 
trials in this study, but each trial consisted of a novel relation (e.g., trial 2 was the 
relation symmetry, which was novel for 4-year-olds; trial 3 was big-medium-small, 
etc.). In effect, the 4-year-olds had to recognize the relational commonality from 
only one comparison of two exemplars. In the RMTS study (Christie, 2010), across 
all the eight trials, 2- and 3-year-olds only had to notice one relation—the identity. 
But here, too, when we examined performance across the eight trials of comparison, 
we saw no difference between the beginning and end trials: Children correctly chose 
the identity relational match right after the first comparison trial. In contrast, it took 
much longer to learn about nonadjacent dependencies in Gomez (2002): Adults 
were given hundreds of sentences (aXnb) before being tested. Incidentally, the high 
volume of the learning sample may explain the need for a greater variability: It is 
possible that 24 distinct X particles helped to sustain attention across the study, 
while learners who were trained on fewer X’s were exhausted by the samples’ 
monotony. Concerning the speed of learning, in many contexts (e.g., infants), it is 
impossible to explicitly ask learners to compare. Even for the 4-year-olds in our 
study who learned new relations right away, when we asked “what’s the same about 
these two [standard exemplars],” they mostly gave no reply. The only viable com-
parison is often implicit.

Sample variability should not be confused with the similarity of exemplars. As 
an illustration of the difference, consider redoing Gomez’s study with 24 distinct but 
similar X elements, for example, substituting X = wadim, wabim, wapim, wagim… 
for the initially used X = wadim, kicey, puser, fengle.... What is the matrix of learning 
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outcomes parameterized by variability (the number of distinct X’s) and similarity of 
exemplars? We may speculate that if exemplars are more similar to one another 
overall, we will need a greater number of distinct exemplars for the same learning 
outcome. This question has not been addressed in the literature thus far; it still 
awaits a first exploration.

�How Does Comparison Happen?

When exemplars are available for comparison, does comparison automatically hap-
pen? Clearly not, as seen in the lower variability condition above. Participants did 
not learn the nonadjacent dependency when the intervening element X spanned 
fewer than 24 types. In some ways, this is surprising: Adult subjects had only one 
thing to pay attention to in the experiment—multiple exemplars of the nonadjacent 
relation—and still failed to compare them and learn the rule. On the other hand, we 
often see in everyday learning that young children spontaneously learn relational 
concepts. They usually do so via implicit comparisons—adults do not tell children 
to compare all the time. So what invites learners to compare in the first place? I 
discuss two major invitations to compare: object similarity and language.

�Object Similarity Invites Comparison

Recall that children are highly attracted to surface similarity. For example, in Christie 
(2010), children presented with the standard AA matched it to the object match AC 
rather than to the relational match BB. As I discussed in the beginning, noticing mul-
tiple exemplars of a surface feature does not require learning: Children immediately 
and spontaneously match red to red and circle to circle. Such unsolicited attention to 
object matches can impede relational learning, especially when an object match is 
pitted against a relational match. Under favorable circumstances, however, attention 
to object matches can also foster relational learning. This happens when noticing 
object matches catalyzes a closer scrutiny of the exemplars. Once children attend to 
object similarities among multiple exemplars, they are more likely to compare them.

For example, a 3-year-old is unlikely to solve the analogy chicken:chick::dog:? 
spontaneously, despite knowing the word puppy and the parent-offspring relation. 
On the analogy task chicken:chick::duck:?, however, she is more likely to be suc-
cessful. What differs between the two is that chicken and duck have a greater degree 
of surface similarity than do chicken and dog. Having noticed this surface similar-
ity, children may align the chicken and the duck’s features—their beaks, feathers, 
wings, and legs. Structure mapping posits that this alignment enables children to 
then notice the relational commonality so that all elements of the analogy can be 
organized in terms of their relational roles: chicken and duck as parents and chick 
and the missing element (duckling) as offspring. The learner can use the offspring 
relation to draw an inference because the surface similarity allowed her to perceive 
the relation in the first place.

S. Christie



schrist3@swarthmore.edu

231

Let us return to the classic RMTS task to illustrate the effectiveness of object 
matches in inviting comparison. In the original study, 2- and 3-year-olds failed to 
match standard AA to relational match BB; they chose randomly between choices 
BB and CD. (Note that this is the easier version of the task, with no competing 
object match choices such as AC.) To test if object matches can invite comparison 
and strengthen children’s relational perception, we ran a study where 3-year-olds 
first saw a version of RMTS with a heightened surface similarity of the relational 
match: standard AA, choose between AA and CD (Fig. 11.3). Children saw four 
such trials and were then immediately tested on the original RMTS task (AA, 
choose BB or CD). That 3-year-olds performed close to 100% correct in the surface-
similar RMTS will not be surprising; what is remarkable is their subsequent 
performance in the original, harder RMTS—they showed a preference for the rela-
tional match (Christie, 2010). Four trials of the surface-similar task were enough to 
shift the preschoolers’ choices in the task without surface similarities.

The most likely explanation is that the surface-similar trials prompted the sub-
jects to carry out a comparison, which they then applied in the subsequent trials 
without surface similarities, choosing the relational match as a consequence. Of 
course, since the children received four easier trials in the beginning as compared to 
the baseline RMTS study, one might attribute their success to a simple practice 
effect. To rule this out, we ran a control group of 3-year-olds who received four 
original RMTS trials in the beginning of the study. Consistent with our explanation, 
this group’s choices were random.

This type of learning—building up from easy surface similarities to the more 
challenging relational commonalities—is called progressive alignment (Gentner & 
Medina, 1998; Kotovsky & Gentner, 1996; Loewenstein, Gentner, & Hung, 2007). 

Fig. 11.3  Easy surface 
similarity (match in both 
object features and 
relations) helps children to 
focus on Relational Match 
to Sample Task (RMTS)
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This powerful learning process is robust in children’s day-to-day life because it 
capitalizes on an existing bias: that object matches are salient for even the youngest 
learners. The invitation to compare comes internally from the learner rather than 
being provided by external factors. Below, I review the evidence for progressive 
alignment across different ages, tasks, and domains.

�Progressive Alignment

Many tests of infants’ concepts implicitly rely on progressive alignment. In a typical 
habituation test, infants are presented with a number of events that represent some 
relation using identical or very similar objects. For example, in Quinn (1994) which 
tested infants’ knowledge of the spatial relation above, all habituation events 
depicted a diamond-shaped object above a line. A priori, the relation above could be 
showcased using different objects above a line, say a diamond in habituation 1, a 
square in habituation 2, etc. But this is not the usual practice; habituation trials typi-
cally afford surface similarity—the events match in features as well as in relations. 
Carried out this way, habituation also serves as a learning opportunity: Infants 
notice a relational commonality among similar-looking events at habituation and 
are then able to observe it in trial runs.

Studies like Quinn (1994) are not by themselves direct evidence of progressive 
alignment. To my knowledge, no infant studies thus far have directly tested the 
importance of object similarity during habituation, contrasting similar-looking 
habituation events with more varied ones. But there is some indirect evidence of 
progressive alignment. For example, while 3-month-old infants in Quinn (1994) 
successfully discriminated above and below spatial categories when familiarized 
with dots, same age infants failed to form the categorization when they were famil-
iarized to different shapes (i.e., a dot, an arrow, a triangle) (Quinn, Cummins, Kase, 
Martin, & Weisman, 1996). This suggests that the younger infants may in fact be 
learning the relation when presented with alignable, similar-looking habituation/
familiarization events. In this view, habituation events that involve varied-looking 
stimuli result in a failure to align and to learn the relational commonality.

Direct evidence for learning by multiple exemplars via progressive alignment is 
abundant among preschoolers (e.g., Childers et al., 2015; Loewenstein et al., 2007). 
For example, in Loewenstein et al. (2007), 3- to 5-year-olds who learned using pro-
gressive alignment could successively learn a novel label referring to a part rather 
than to a whole object shape, a language learning task that is normally difficult at 
this age. Children were presented a series of novel characters accompanied by a 
novel label, for example, “this one has a blick.” Their task was to map the novel 
word to the correct body part (navel) as opposed to other visible options such as 
eyes, nose, etc. Half of the children were presented with the characters in a progres-
sive alignment way—from similar-looking to dissimilar—while the other half saw 
the same characters in random sequences. The progressive alignment group learned 
the name for the body part well: They correctly applied blick to the navel of a very 
different-looking character. The control group did not learn the word meaning.
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�Language Invites Comparison

There is good reason to suspect that language plays a prominent role in comparison 
learning. But how exactly? I discuss here several specific ways by which language 
can function as a cognitive tool for inviting alignment (see also Gentner & Christie, 
2010; Gentner & Namy, 2006). Distinguishing them is important for making predic-
tions on whether language will invite comparison in a given context. Indeed, 
although language is ubiquitous, comparison is not always easy to elicit.

Comparative words  First and most obvious, many word meanings are compara-
tive: more, taller, best. Hearing the word taller invites a learner to make a compari-
son among possible references; hearing more compels her to try various 
alignments—with another carrot, a longer playtime, a stronger emotion.

The resulting comparison is usually category-specific: “That tree is taller” will 
typically refer to another tree, not to a person. Of course, one could mean “that tree 
is taller than this man,” but such non-alignable comparisons are disfavored in every-
day language use. There is evidence that 4-year-olds already use comparative impli-
cature within restricted categories. Barner and Snedeker (2008) showed children 
novel objects of varying heights and asked children to find the tall and short objects. 
The objects were labeled with a novel category name—“these are pimwits”—and 
children had to find the tall pimwit. Results suggested that 4-year-olds were sensi-
tive to the height information within the comparison set, and they concurred on the 
tallest object among this set of objects. When a second kind of object was intro-
duced (e.g., children now saw pimwits and tulvers), 4-year-olds restricted their tall 
interpretation within the set: The tall pimwit was the tallest among the pimwit 
objects, even though it was not the tallest object across both pimwit and tulver 
objects. Interestingly, category label can act as a determiner of the set: When both 
object kinds were called under the same name (e.g., these are all pimwits), children 
now shifted their tall interpretation to the tallest one across this comparison set.

We may ask if the observed preference for alignable comparisons over non-
alignable ones is strengthened by the use of comparative words or whether this 
preference is independent of language use. Currently available evidence is not suf-
ficient to decide this. Young children’s strong bias for perceptual similarity suggests 
that some bias favoring alignable comparisons is in place from the start. Even if this 
is true, language may work to enhance such a bias.

Systematic language invites systematic structure  Another mechanism by which 
language invites comparison arises from the systematicity afforded by language: A 
systematic description of a problem invites a correspondingly systematic concep-
tual representation. For example, Loewenstein and Gentner (2005) showed that 
young children could make use of language systematicity to infer structures in 
space. Three- and four-year-olds confronted with a spatial search task heard either 
a systematic set of terms top-middle-bottom or non-systematic terms on-in-under 
applied to boxes with three shelves (see Fig. 11.4). After seeing the experimenter 
hide a star in the Hide Box, the children were asked to find the star in the 
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corresponding spatial location in the Find Box. This hiding-finding task was diffi-
cult for children because the spatial alignment was pitted against object matches: 
The top location in the Hide Box looked like the middle location in the Find Box, 
etc. The prediction was that hearing the systematic terms top-middle-bottom would 
allow children to decode the spatial structure more easily than would hearing the 
non-systematic set on-in-under, which does not invite a hierarchical spatial repre-
sentation. This prediction was borne out: The top-middle-bottom group outper-
formed the on-in-under group.

What is more, this mechanism can also work across domains. Gentner and 
Christie (2006) used the same setup as in Loewenstein and Gentner (2005), but this 
time the systematic set of terms was one-two-three while the non-systematic terms 
were dog-pig-sheep. The one-two-three group figured out the spatial structure and 
successfully solved the search task, while the dog-pig-sheep group persisted in 
making object match errors. The results held even among those children who had 
perfect memory for the names of the location: A child who remembered that dog 
referred to the top location still typically performed worse than her peers in the top-
middle-bottom group. This is a telling example of how language systematicity fos-
ters relational learning: Concrete animal names may help children to remember 
individual locations, but they do not accentuate spatial relations. Nonspatial albeit 
systematic terms can do just that. We see that successful mapping can occur even if 
the language domain (number) does not match the conceptual domain (spatial); a 
systematic set of terms invites cross-domain comparisons.

Common labels  The third mechanism is seemingly mundane: Any label can invite 
alignment. The idea is that when two things or events are called by the same name, 
learners are invited to align them. This is a qualitatively different mechanism from 

Hiding 
Box

Finding 
Box

Fig. 11.4  Spatial mapping task used in Loewenstein and Gentner (2005). Children saw a star hid-
den behind one of the locations (e.g., bottom) at the Hiding Box and had to search in the corre-
sponding location at the Finding Box. Because object match (the pizza picture at the bottom 
location of the Hiding Box matches with the pizza picture at the top location of the Finding Box) 
is pitted with relational mapping (bottom to bottom), 4-year-olds had difficulties solving this map-
ping task
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the previous two because it relies on the mere appearance of a word, independent of 
its meaning. Learners take the cue to compare even when confronted with an unfa-
miliar label.

To show this mechanism at work, we again use the Relational Match to Sample 
Task (RMTS): match AA to BB, not CD. Recall that in the classic setup, 2- and 
3-year-olds could not perceive the requisite relational similarity and choose ran-
domly between BB and CD. In a novel label version of this task (Christie & Gentner, 
2014), we marked AA with a novel label such as truffet and asked children which of 
the two options was also a truffet. Remarkably, without any training whatever, 
2-year-olds declared the relational match BB to be a truffet. A novel label invited 
comparison.

The simplicity of this mechanism (it is independent of semantics!) means that it 
is available early—evidently at least as early as 2 years. The only prerequisite for 
this mechanism to effect comparison is that learners must have a prior assumption 
that like labels refer to like things. For this reason, I believe this labeling mechanism 
is one of the primary drivers of multiple exemplar learning in young children.

�Social Relational Learning

Humans learn from and about relational concepts in almost every domain. To name 
a few examples, verbs and prepositions are relational components of language 
learning, numbers and arithmetic are intrinsically relational, spatial concepts—as 
experienced in daily life and confirmed by physicists (Einstein) and philosophers 
(Mach)—are all relative.

Likewise, the social domain is filled with relational concepts. To navigate the 
social world well, learners have to understand a plethora of relations—kinships, 
friendships, alliances, social hierarchies—because these relations govern behavior 
and have far-reaching consequences (friends help; foes do not). A learner needs to 
recognize multiple exemplars of a social relation: It is not enough to know that mom 
refers to my mother; I must also know that another woman is mom to my friend and 
not to me. The inherently relational nature of the social domain makes it an intrigu-
ing ground on which to inspect the problems and solutions for relational learning.

�The Problem

Do learners really have difficulty recognizing multiple exemplars of social rela-
tions? We know this is the case in other domains of relational learning: Preschoolers 
do not spontaneously perceive identical relational matches (Christie & Gentner, 
2014) or have difficulties learning verbs (e.g., Childers et al., 2015). In the social 
domain, however, the literature does not directly chart the difficulties of relational 
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learning and, in fact, many recent studies suggest that humans learn social relations 
precociously. For example, 6-month-old infants infer a dominance relation based on 
group size (Pun, Birch, & Baron, 2016), while 5-month-olds prefer “helpers” over 
“hinderers” (Hamlin, Wynn, & Bloom, 2007). Already by 15 months, infants can 
organize perceived relations into a larger structure. For instance, they expect that 
two babies who are comforted by the same adult will affiliate with each other 
(Spokes & Spelke, 2017). On the other hand, social relations form such an intricate 
web that social learners still have plenty of opportunities to encounter the chal-
lenges and pitfalls of relational learning. For example, even 4-year-olds have diffi-
culty differentiating siblings from friends; they were equally likely to indicate that 
siblings and friends have a grandmother in common (Spokes & Spelke, 2016). As 
another example that may be challenging even for the adult readers of this text, 
think about acquiring the concept mother of firstborn child that plays an important 
role in many polygamous cultures.

It is therefore useful to precisely characterize the problems of social relational 
learning. What is difficult to learn and why?

�Problem 1: Lack of Domain Knowledge

Even if we accept that some social knowledge is innate (such as core knowledge in 
the social domain; see Spelke & Kinzler, 2007), most social relations will not be in 
place from the very beginning. Rather than cataloguing the social relations to be 
learned (kinship, friendship, schadenfreude, etc.), here I will focus on a few sample 
relations: relational sameness, goals, and false beliefs.

Relational sameness  Two- and three-year-olds do not spontaneously select the 
relational match to the identity relation in the classic RMTS task, in which two 
inanimate, simple geometric shapes depict identity (Christie & Gentner, 2014). 
Does the perception of relational sameness change if identity is depicted by social 
entities such as faces? My lab has begun to answer this question: We are testing 2- 
and 3-year-olds on a social version of RMTS—match AA to either BB or CD—in 
which each letter represents a face. Preliminary results at the time of writing suggest 
that 2-year-olds are better in perceiving the relational match in this task than they 
were in its nonsocial predecessor. If the preliminary findings bear out, a new intrigu-
ing question will emerge: Can social relations provide a springboard for understand-
ing relations in other domains? I will return to this question in section “Problem 2: 
Relational Versus Object Matches”

Goals  Goals are relational and fit squarely within the social domain: They can only 
be attributed to social agents (see Woodward, Sommerville, Gerson, Henderson, & 
Buresh, 2009 for review). Infants as young as 6  months understand goals 
(Woodward, 1998), but this understanding develops over time. As an example, the 
same 6-month-old infants do not perceive the goal of an action that involves a tool, 
for example, using a clasp to reach for a toy; that understanding comes later at 
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12 months (e.g., Cannon & Woodward, 2012; Sommerville & Woodward, 2005). 
Here, comparison and structure mapping come in handy: When 7-month-olds were 
given a comparison of the action, they were able to understand the goal (Gerson & 
Woodward, 2012). In effect, comparison allowed these infants to “skip ahead” a 
few months in their understanding of goals.

False belief  Comparison also benefits children’s false belief understanding—a 
complex task, which is necessary to function in a social environment. Children 
younger than 4 years of age often fail in a standard false belief task (Wellman, Cross, 
& Watson, 2001; though see recent evidence of infants passing a simpler false belief 
test, e.g., Baillargeon, Scott, & He, 2010). Hoyos, Horton, and Gentner (2015) asked 
whether comparison can help young children to understand false beliefs earlier. 
They found that 3-year-olds who compared two false belief events and aligned them 
could then understand a false belief in a later test; their peers who saw the same 
events sequentially did not (see also Pham, Bonawitz, & Gopnik, 2012).

�Problem 2: Relational Versus Object Matches

Even if children know a relation, they may not recognize its multiple exemplars 
because they find object matches more salient. A prototype of this situation is the 
Gentner and Christie (2006) study where preschoolers matched AA to AC rather 
than BB. A propensity to attend to objects is perhaps even more likely to occur in 
the social domain because children naturally find social entities salient, for exam-
ple, preferring faces over other, equally complex objects. To my knowledge, no 
developmental study thus far has directly pitted relational versus object matches in 
the social domain. Doing so would be very useful for several reasons.

First, object matches seem to play a prominent role in social reasoning. As a 
heuristic example, when seeking information about China, many people would 
rather turn to a US-born Asian-American than, say, to an African-American profes-
sor of sinology. These types of choices are common in adults’ social life; quite pos-
sibly, they are also faced frequently by young social learners. Characterizing social 
reasoning as a (possibly shifting and context-dependent) preference for relational 
versus object matches can potentially transform our understanding of many social 
learning processes.

Second, social categorization phenomena can often be understood in terms of a 
tension between object and relational matching. Five- to six-year-old children take 
the most minimal cues (such as t-shirt color) as signaling in-group membership 
(Dunham, Baron, & Carey, 2011; Dunham & Emory, 2014; Spielman, 2000). But if 
we temporarily set aside our knowledge of social status, we will discover that seem-
ingly fundamental cues in adult social grouping—gender, race, nose shape in 
Rwanda—are, in essence, object-matching cues. Viewing social categorization as 
an arena in which object matches and relational matches vie for our attention and 
preference opens up a large area for future studies—to explore how social groups 
and their perception originate from relational learning.
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One example of such a study is Kurzban, Tooby, and Cosmides (2001), who 
showed that in adults, a particular relational similarity—coalition—can trump 
social categorization based on race (object similarity). Participants were given a 
Memory Confusion Protocol, where they were exposed to a series of photographs 
and sentences (each pictured individual said a number of sentences). After this 
exposure, participants had to recall who said what. The premise is that one is more 
likely to make within-category error than between-category error. For example, a 
soccer fan is more likely to confuse Messi and Neymar (a famous duo that played 
for Barcelona) than the archrivals Messi and Ronaldo (playing for two different 
clubs). The results of the experiment showed that although both cues for social 
categorization were available (coalitional vs. race), subjects made more errors based 
on the coalitional cues. Kurzban, Tooby, and Cosmides see this result as supporting 
their theory that coalitional cues form the evolutionary basis for how humans carve 
social groupings in their representations. If this is true, we should expect young 
children to start out with noticing coalitional cues—relational cues—in their learn-
ing of social groups rather than progressing toward it from initially noticing surface 
cues such as race. But, this is not what happens in other domains, where young 
children’s preference shifts in time from object matches to relational matches. Is the 
direction reversed in the social domain? So far, no developmental works have 
directly pitted race (object match) versus coalition (relational match).

My lab has begun to look at the tension between relational and object matches in 
the social domain. As an initial test, we are using a social variant of the RMTS task: 
Match the pair of faces AA to faces BB or faces AC. Unlike the classic RMTS task 
(where 4-year-olds overwhelmingly choose object matches over relational ones 
(Christie & Gentner, 2010), here both outcomes are possible. Four-year-olds may 
prefer object matches because two identical faces are just so compelling, but the 
social nature of the faces may also work to make the identity relation more obvious 
(think twins).

The latter outcome would mean a fundamental change in our understanding of 
relational reasoning—that children initially favor object matches and only later shift 
to relational matches (Gentner, 1988; Halford, 1992). Instead, we may need to posit 
a new account where attention to relations is initially limited to the social domain 
and only later colonizes other domains. In this view, children could use social rela-
tional concepts to learn analogous relations in other domains. At present, this is a 
hypothesis; we do not yet have evidence to substantiate this view.

�The Solution: How Does Structure Mapping Work in the Social 
Domain?

If understanding the social world is a relational learning problem, then structure 
mapping ought to provide a solution. I have discussed two developmental studies in 
which structural alignment and comparison helped young children to perceive rela-
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tional commonalities. In the first one, Gerson and Woodward (2012) showed that 
6-month-olds could learn about goals only when they were exposed to comparison 
learning. In the second study, Hoyos et al. (2015) showed that 4-year-olds who ini-
tially had not passed a false belief task succeeded in a later test only when they 
compared false belief scenarios in the interim. More studies of this kind are needed 
to give a complete account of structure mapping in the social domain.

The following sections discuss the next set of questions, which are relevant for 
social relational learning.

�Language for Learning Relational Concepts

What is the role of language in learning social relational concepts? Children’s earli-
est vocabulary contains many social relational concepts, particularly relating to kin-
ship: for example, mother, brother, uncle, and grandma. Do children possess these 
relational concepts prior to learning their labels, or does labeling the concepts help 
children to learn their relational meaning? For example, do children know that 
“mother” is a relational concept that can be applied in widely different parent-
offspring contexts—to my mother, a friend’s mother, or Mother Goose? One classic 
study by Keil (1989) suggests that this is not the case. Preschoolers thought that 
uncle referred to a man wearing a hat and smoking a pipe rather than one’s father’s 
brother—a clear example of the tension between object and relational matches. To 
the extent that this (mis)understanding is widespread for kinship terms, their acqui-
sition is an excellent ground for studying how language promotes learning relational 
terms. The template from nonsocial domains suggests this mechanism: Common 
labels invite comparison, which fosters relational abstraction (Christie & Gentner, 
2014). On day 1, a child may hear her friend say “that’s my uncle,” and on day 2, 
she may hear Mom say, “give your uncle a hug.” The common label “uncle” may 
prompt the child to compare the two events. Despite the differences in perceptual 
features between days 1 and 2—the uncles in question may well be different men—
comparison can highlight the common relational structure.

�Does Object Similarity Help?

Recall that children can learn from progressive alignment: advancing from compar-
ing highly similar exemplars to more distant ones. For example, children learned the 
concept four more easily when they compared two quadruples of similar objects 
(e.g., four red balls and four pink balls) than when they compared sets of four dis-
similar objects (four red balls and four cats) (Mix, 1999, 2008). Assuming progres-
sive alignment also applies in the social domain, we should expect children to 
recognize social relational concepts earlier when they are instantiated by more 
similar-looking people or groups. For example, do children apply the concepts par-
ent or enemy more easily to people of the same age, gender, or race?
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�Social Comparison and Object Versus Relational Similarity

Comparison is ubiquitous in the social domain; people constantly compare them-
selves to others, as well as comparing others to one another (social comparison; 
Festinger, 1954). Structure mapping theory (SMT) offers an account of this process.

First, SMT predicts that the earliest mappings happen between closely similar 
exemplars—social entities that share featural similarities, for example, people of 
the same gender, race, and age. If young children are indeed likely to restrict their 
initial social comparison to superficially similar people or groups, it may have a 
far-reaching impact on their everyday social reasoning. For example, a child who 
restricts her initial social comparisons to children of the same race will not derive 
the benefit of comparison—noticing deeper relational commonalities—in her social 
learning about other races. Without intervention from the outside, a child may lag 
behind in recognizing—or, indeed, never recognize—the full scope of what she and 
children of other races have in common.

Second, structure mapping shifts learners’ perception from surface similarities to 
favoring relational commonalities. Thus, advanced learners are expected to engage 
in comparison more easily when the subjects of comparison share a meaningful 
relation rather than a simple surface feature. There is evidence for this among adults. 
Mussweiler and Gentner (2007) asked adult participants to compare a target charac-
ter to either a surface-similar standard or to a relationally similar standard. For 
example, if Bob (the target) was a sophomore highly dedicated to sports, the feature-
match Adam would share surface characteristics (same gender, disinterest in cul-
tural events, athletic build) while the relational match Melissa would combine 
deeper commonalities with Adam (a high dedication to some pursuit such as music) 
with superficial differences (different gender, interests, hobbies). Adults preferred 
to compare the target to the relationally similar standard.

We do not yet know whether this finding holds across ages, contexts, and cul-
tures. It is quite possible that young children will show the opposite pattern, favor-
ing social comparisons involving object-matching standards over relational ones. 
Adults may also reverse their choices when conducting comparison under time 
pressure: In casual, quick social interactions, they may only get through stage 1 of 
the structure mapping process—mapping object matches. An extra layer of com-
plexity is that cultural context affects which object and relational similarities appear 
salient in the comparers’ representation. For example, in gender-segregated cul-
tures, a female teacher target may be more likely compared to another female than 
to another teacher. Indeed, in a society where gender sets strict boundaries on one’s 
relational role (e.g., designating a woman as the primary caregiver, mother, and 
wife), perhaps we should consider gender as a relational rather than a feature cue. 
This example illustrates that in the social domain, boundaries between relational 
and object matches can be more fluid and debatable than in other domains. Much 
exciting research waits to be done in order to understand how we use surface and 
relational matches in our social comparisons. What commonalities and what differ-
ences occur between predominant social comparison styles in different cultures?

S. Christie



schrist3@swarthmore.edu

241

�Alignable Differences

Structure mapping theory predicts that it is easier to find meaningful differences 
between alignable events than between non-alignable ones. For example, it is easier 
to list the differences between hotel H and motel M than between hotel H and cat 
C. This is because the characteristics of a hotel (price, parking lot, reception) are 
amenable to being mapped onto the characteristics of a motel; we call such features 
alignable dimensions. The dimensions of a hotel and a cat, however, do not align. 
Sagi, Gentner, and Lovett (2012) have shown that adults declare two events to be 
different faster when they are non-alignable but can list more differences between 
two events when they are alignable. Likewise, preschoolers could find more mean-
ingful differences between alignable items such as forks and spoons than they could 
between the non-alignable forks and cats (Gelman, Raman, & Gentner, 2009). 
Greater similarity affords a more meaningful contrast.

Alignable differences can potentially explain many phenomena in the social 
domain because its main entities—people—are by nature alignable. Moreover, they 
tend to be more alignable than exemplars in other domains so that differences 
between people are easier to discern than differences between other entities. We 
found evidence for this when we contrasted inductive generalization reasoning in 
the social versus the biological domain (Noyes & Christie, 2016). We asked 5-year-
olds to find out whether all children like toy Y by inquiring either with two girls (a 
narrow sample) or with a boy and a girl (a broad sample). The broader sample (boy-
girl) provides the larger scope for generalization (the inductive principle; Osherson, 
Smith, Wilkie, Lopez, & Shafir, 1990), and our 5-year-old subjects opted for this 
correct choice. However, when the same question was asked about animals (narrow: 
a zebra and a horse; broad: a zebra and a mouse), they chose at chance. Children’s 
inability to use the broader sample to generalize in the animal kingdom was consis-
tent with prior results (Gutheil & Gelman, 1997; Li, Cao, Li, Li, & Deak, 2009; 
Rhodes & Brickman, 2010), but the finding that they use the broader sample when 
reasoning about people was novel—the first demonstration that 5-year-olds are 
capable of applying the inductive principle. We believe that the inductive principle 
was activated in the social domain because the latter enabled them to rank the vari-
abilities of the samples—to perceive that a boy and a girl really are more diverse 
than a pair of girls. When reasoning about animals, children likely perceived the 
zebra-horse pair to be just as diverse as the zebra-mouse pair.

Another potential outcome of using alignable differences in our reasoning is the 
out-group homogeneity effect: that people perceive members of the out-group to be 
less different from one another than members of the in-group (Messick & Mackie, 
1989; Park & Rothbart, 1982; Quattrone, 1986). A likely explanation is that people 
within one’s in-group are more alignable (at least to oneself) so that differences 
among them are easier to perceive. On an anecdotal level, similar cultures and coun-
tries tend to see greater divisions or conflicts than countries that are more distinct, 
and people’s dislikes or rivalries run stronger when the rivals have more in common. 
The big question is whether and when young learners start using alignable 
difference-based reasoning in their calculations about social relations. It is possible 
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that with every multiple example that they encounter, the alignable exemplars give 
rise to understanding many social relational concepts involving differences.

�Summary

Noticing relations is hard. Given multiple exemplars, learners can overcome this 
difficulty by comparing the surface features of exemplars so as to distill their rela-
tional commonality. This relational abstraction allows learners to subsequently rec-
ognize multiple exemplars of the same relations: from recognizing relational nouns, 
verbs, spatial relations, and prepositions to potentially understanding complex rela-
tions in the social domain. Structure Mapping Theory (Gentner, 1983) provides 
core explanations for the learning process: Learners who compared multiple exem-
plars will favor relational commonalities more than featural commonalities; to com-
pare means to align the exemplars, not just merely have two (or more) multiple 
exemplars.

But learners do not always align multiple exemplars as evidenced by young chil-
dren having difficulties recognizing exemplars of relational concepts. Even the 
basic relation such as identity poses a problem to young children (Christie & 
Gentner, 2010, 2014). Explicit comparison given by “teachers” (adults, caregivers, 
experimenters) can foster learners’ relational thinking. But other learning tools, 
which are readily available in the learner’s everyday environment, can also invite 
alignment: (i) object matches or overall similarity and (ii) common labels. The criti-
cal question for further research is what prompts learners to spontaneously make 
use of these learning tools. Why do some people align and some do not?

Learning about the social world requires learning about multiple exemplars of 
social relations: Who counts as friends, foes, kins, and superiors? Even if children 
are precocious social learners, they still have to learn many relational concepts in 
the social world. Given this same problem of relational learning, it may be fruitful 
to parameterize the problems and solutions from the structure mapping perspective. 
For example, learners may also face the tension between object and relational 
matches in choosing standards for social comparison. At the same time, aligning 
and comparing people may result in learners noticing relational commonalities—
such as same roles (e.g., we’re both parents), favoring such commonality over mere 
appearances (e.g., we’re both white). Much research is to be done to understand 
social learning as relational learning.
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Chapter 12
Epilogue: Comparing Comparison 
Theories: What Can We Gain?

Jane B. Childers

Abstract  This book brings together researchers who use different theories to test 
infant and children’s learning about concepts and language. To do this, chapters 
were invited from researchers  who focus on how infants (see Chaps. 2, 3, 4, 5, 
and 6) and children learn from multiple examples (see Chaps. 7, 8, 9, 10, and 11). A 
concerted effort was made to include people who relied on different theories to 
explain unsupervised learning across stimuli to examine how these theories struc-
tured their studies, which mechanisms were posited in each theory, and what the 
evidence was for each theory in a domain. This final chapter discusses five main 
themes that can be drawn across these chapters including the following: (1) the abil-
ity to use information across exemplars can be seen early in development, (2) com-
parison abilities develop, (3) there are underlying mechanisms in each view that can 
be compared, (4) do particular procedures keep researchers from considering alter-
nate theories?, and (5) what future directions are suggested? In conclusion, the most 
amazing part of learning from multiple examples is that it is powerful! By collecting 
ideas from a variety of thinkers who have tackled similar questions using different 
tools, we hope new insights will emerge for individual researchers and for the field.

The goal of this book was to bring together in one place researchers who use differ-
ent theories to test infant and children’s learning about objects and words. To do 
this, chapters were invited from researchers who focus on how infants (see Chaps. 
2, 3, 4, 5, and 6) and children learn from multiple examples (see Chaps. 7, 8, 9, 10, 
and 11). A concerted effort was made to include people who relied on different theo-
ries to explain unsupervised learning across stimuli to examine how these theories 
structured their studies, which mechanisms were posited in each theory, and what 
the evidence was for each theory in a domain. (Recall that not all traditions are rep-
resented, but many key theories are present in this book.) A central idea in each of 
these theories is that examining evidence across examples aids in learning, leading 
to a greater and deeper understanding of the phenomena at hand. To this end, the 
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goal was to create a single book in which readers could actively compare theories 
and evidence from one chapter to the next. I hope your ability to compare across 
these chapters has led to new insights—as predicted by these theories! I believe this 
process has been productive and, in the next section, I will consider what can be 
learned by reflecting on some key themes across these chapters.

Theme 1: The ability to use information across examples can be seen early in 
development
Although timing varies some across the infant chapters, all describe evidence that 
infants benefit from comparing multiple exemplars within the first year of life 
across several different domains. Specifically, Johnson shows newborns can process 
multiple examples of (simple) stimuli that is visual or auditory, and Theissen adds 
that infants can use statistical learning for attending to VOT and acquiring pho-
nemes early. Hespos et  al. describe processing of a relation across examples by 
3 months, and Casasola and Park describe infants’ understanding of spatial relations 
emerging within the first year. Sobel et  al. also show that as early as 5  months, 
infants can compare across trials to attend to co-occurrences between faces or 
dynamic arrows and locations. Additionally, Graham et  al. show that 9- and 
11-month-olds can learn and generalize properties of object categories, but that they 
are influenced by the familiarity of the category, their age, and by whether they see 
a single or multiple exemplars (multiple exemplars promote learning). Christie 
reminds us that infants perceive social relations in the first 12–15 months but that 
fully understanding social categories (e.g., the category “mom”) can be difficult. 
Thus, the infant chapters show an early ability to compare across multiple exem-
plars can aid in learning speech sounds, objects and categories, and words and rela-
tions. They also demonstrate that these studies can be motivated by, and explained, 
using different theories of comparison.

Theme 2: Comparison abilities develop
In the infant chapters, development is described either later in the first year or 
between the first and second year, and in the chapters with older children, develop-
ment is described across the preschool years/early elementary ages. A key theme is 
that later in development, children can process more stimuli, more complex stimuli, 
and more varied stimuli in a domain than is demonstrated at younger ages.

Specifically, in Johnson’s chapter, infants can process sets of more complex stim-
uli (e.g., visual sequences of shapes) using statistical learning, increasing in their 
ability over the first year. In Casasola and Park, infants’ ability to compare diverse 
exemplars increases such that early in development, their learning is more fragile 
and context bound than it is later in development. Both Casasola and Park, and 
Theissen, show the perceptual characteristics of stimuli and number of exemplars, 
as well as variety across exemplars, affects infants’ learning. Hespos et al. note that 
specific object familiarity interferes with (relational) processing at younger ages, 
with less interference over time. And in Graham et al., at 9 and 11 months, infants 
have difficulty learning about unfamiliar animals shown in dynamic events if they 
are only shown a single example. There is a common thread across these accounts 
and across domains with younger infants needing simpler stimuli that are less 
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varied, and perhaps repeated, to learn from a set of examples and older infants or 
children being able to process more complex varied stimuli. Whether this is due to 
greater cognitive abilities, specific experiences, or both is unclear. Interestingly, this 
pattern appears across theories, ages, and domains.

What about in the chapters including children older than 2 years? Sandhofer and 
Schonberg show that younger or less experienced learners learn words better when 
there is a common context across examples or between the instances present during 
learning and new extension objects; older children are less reliant on context. 
Younger children also benefit from multiple, correlated cues when aggregating (or 
comparing) instances, whereas older children do not need this support as much. 
Imai and Childers show that object similarity can influence 3-year-old children’s 
ability to extend a new verb to a new event if given only a single example before test 
but that experience with high-similarity comparisons can help children learn how to 
compare. Lapidow and Walker use infants’ and young children’s early ability to do 
exploratory causal learning as the basis for a later “Search for Invariance” hypoth-
esis that is based on producing multiple examples of a phenomenon that support a 
child’s current hypothesis. In Christie, as children develop the ability to compare 
relations across examples, including social relations, they can further develop their 
social knowledge (e.g., their false belief understanding) and understanding of social 
categories. Predicting from structure mapping theory to this new domain of social 
categories, what should help children compare is exposure to new relational words, 
experience with examples with high similarity, and a focus on alignable differences. 
Thus, in this chapter, focusing on older children, early abilities underlie later con-
texts in which children can compare.

Theme 3: There are underlying assumptions or mechanisms that are inherent 
in each theory. (Are they different from each other?)
The chapters in this book describe how a specific theory has framed research for a 
specific problem in development and specific age range. Here, I explore the mecha-
nisms that have been described in order to compare these mechanisms to each other.

Recall that the key mechanism in statistical learning is attention to co-occurrences 
across stimuli. Now, consider two main points from Erik Thiessen. One is that we 
can contrast conditional probability (from one stimuli to the next) with distribu-
tional probability (processing across the set; cross-situational processing). This is 
an important contrast that perhaps could be extended in other areas. What would 
conditional probability look like if applied to verb learning, or spatial processing, as 
compared to distributional probability processing? As a verb researcher, conditional 
probabilities could be computed within a single event, while distributional probabil-
ities could be computed across the set of events linked to a verb, but (to our knowl-
edge) no verb study has directly compared these types of tasks/processing. In terms 
of mechanisms, Theissen argues that memory structures in the brain and the mind 
are critical to comparison, which is an important assertion. Often, infants and chil-
dren are comparing stimuli they are experiencing with stimuli from the past, and 
thus memory is a key part of the task of comparing, and memory stores and abilities 
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could be key mechanisms in either statistical learning or structure mapping process-
ing. Scott Johnson poses a different question which is whether infants are storing 
transitional probabilities (TPs) across examples or are storing chunks (sets of exam-
ples). He proposes that perhaps they are storing TPs on the way to forming chunks. 
A similar notion is described in Sobel et  al. in that infants and toddlers may be 
forming units across co-occurrences of speaker + label + object, which are then 
judged to be reliable or unreliable.

Sandhofer and Schonberg also link memory to statistical learning in older chil-
dren. They remind us that infants and children hear many repetitions of a word 
before learning it. That what helps in memory, and in aggregating examples or com-
parison, is having similar contexts and correlated cues. Also forgetting and being 
reminded of a word helps children learn a word, as is found in memory experiments. 
This is supported by evidence from their lab showing that spaced practice produces 
the best performance when there is a delayed (15  minutes later) test (Vlach, 
Ankowski, & Sandhofer, 2012). They also note that there is a tension between the 
similarity of examples and variation across a set of examples, which is an important 
point across chapters. Multiple researchers note that similarity leads to easier but 
more restricted learning, whereas varied examples are more difficult to aggregate 
but lead to greater generalizations. Lapidow and Walker argue that a phenomenon 
once seen as a cognitive error, only testing or creating tests of a causal relation that 
support a current hypothesis, actually does help learners because these tests give the 
learner multiple examples of contexts in which a particular causal relation holds. 
This also helps learners discern how to generalize a new causal relation.

In structure mapping, infants and children who are comparing across examples 
can begin by finding all possible matches (see Gentner, 2010), and then build up 
these matches into an alignment of specific elements across the examples based on 
their common relational structure. Thus, both statistical learning and structure map-
ping have a bottom-up component to the processing, but in structure mapping, the 
mechanism then leads to the consideration of structure. Most chapters in this vol-
ume only consider one theory or the other, but see Casasola and Park for a consid-
eration of how different theories  could apply to their studies of spatial learning. 
Hespos et  al. argue for a mechanism for relational processing that is unique to 
human infants, not seen in other animals. Would statistical learning produce a pat-
tern of results confined to human infants? 

In sum, both statistical learning and structure mapping have bottom-up process-
ing, both lead to the (possible) creation of larger units of information (either chunks 
or units, or representations with a structure), and both can include higher-order 
information either because this information is also considered (e.g., rational real-
world knowledge; see Sobel et al.) or because higher-order insights are promoted.

Theme 4: Do the procedures used in a topic area keep researchers from 
considering alternative theories (or vice-versa)?
When I initially envisioned this book, it seemed possible that researchers could be 
constrained by the procedures they use, only using specific procedures to test a par-
ticular theory. For example, in object permanence, using the violation of expectation 
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procedure (e.g., Baillargeon’s work) leads to different conclusions than does the 
direct enactment procedure used by Piaget. To explore this question, I asked 
researchers to describe the procedures commonly used in their domain and ask 
whether other procedures would lead to different results.

In the infant chapters, researchers are using the same set of procedures regardless 
of theory, which is a strength. For example, Johnson discusses studies using habitu-
ation and so does Casasola and Park, Theissen, and Hespos and collaborators. At 
times, additional procedures are mentioned, but none seem critical for shaping one 
outcome versus another. For example, Johnson mentions studies of preferential 
looking, eye tracking, fMRI, and ERP, but these could be used in Casasola and Park 
or in Theissen’s studies. Hespos et al. add animal studies and computer simulations, 
and Graham et al. describe studies in which toddlers manipulate objects at test, but 
these procedures also could be applied in other chapters.

In the chapters with older children, again, researchers appear to be using com-
mon procedures across theories. For example, Sandhofer and Schonberg describe 
word learning tasks, often focusing on forced-choice tasks. These types of tasks are 
also present in Imai and Childers’ chapter which uses a different theory and word 
type (verbs). Lapidow and Walker describe studies of children’s scientific reasoning 
using tasks commonly employed in that domain while Christie describes forced-
choice tasks that can be used across domains.

Thus, there does not seem to be a procedural choice that is dividing researchers, 
which is important. This should make the comparison of results across studies with 
different theoretical foundations easier, as similar types of data should be available 
from different theoretical camps. It is thus interesting that we are not doing more to 
contrast theories within a single paper or area of study or examining whether differ-
ent theoretical mechanisms could be integrated with each other.

Theme 5: What do these chapters tell us about future directions?
One future direction that stands out is how to distinguish statistical learning from 
structural alignment in terms of the results of studies or the data. This is a difficult 
question to answer, and I feel emboldened in stating that this is a difficult question 
by again noting that Casasola and Park could apply both theories to their data on 
infant spatial reasoning. On the one hand, Hespos et  al., Christie, and Imai and 
Childers note  that being caught up in object properties (seen usually in younger 
participants) is one hallmark of structural alignment, but could statistical learning 
explain this? Perhaps in statistical learning, learners are attending to specific stimuli 
and their co-occurrences with other stimuli and thus should be even more caught up 
in specific features of specific stimuli than is seen in structural alignment. What 
about progressive alignment? In structural alignment, closer comparisons are easier 
to compare and help less experienced learners. Could close comparisons also be 
easier to correlate in statistical learning? Is it that statistical learning happens first, 
earlier in development, and then structural alignment comes in later? If so, what 
should we make of Hespos et al.’s findings that infants can do some structural align-
ment or relational processing by 3 months? Further studies with infants incorporat-
ing structure mapping is one area that needs attention. We need to consider what 
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data would distinguish these views or create a view in which both mechanisms are 
at work and describe how they work together.

Another key future direction raised across chapters is the call to further examine 
the mechanisms that underlie a specific theory. For example, Johnson notes that the 
mechanisms that underlie statistical learning are not fully described, while Thiessen 
and Sandhofer and Schonberg explore how memory systems could be one of those 
mechanisms. Extending these ideas, memory abilities and memory  phenomena 
(e.g., the spacing effect, in Sandhofer and Schonberg) also likely underlie structural 
alignment processing, but their role needs to be examined in this area. Imai and 
Childers add that contrasting examples with each other—either for learning an indi-
vidual verb or learning verbs within an overall system—is useful. How comparison 
and contrast interact in these views needs further explanation. In structure mapping, 
contrast should include attending to alignable differences, but there is a different 
goal when contrasting two examples than comparing them. Sandhofer and Schonberg 
discuss statistical learning in terms of aggregating information across examples. Is 
there a role for contrastive information in this theory? The power of contrastive 
information can be seen in word learning (e.g., Waxman and colleagues) and other 
domains, but how it fits with comparison theories has not been fully explicated yet.

In conclusion, the most amazing part of learning from multiple examples is that 
it is powerful! Unique insights arise, as I hope you have seen within each chapter 
and in this concluding chapter that compares these chapters to each other. Doubtless, 
if you have read multiple chapters, you have been able to draw your own deeper 
insights into how comparison works using your comparison abilities. Attention to 
multiple examples also leads to important transfers to new examples, and we hope 
you will be able to transfer some ideas to your own research, teaching, and/or inter-
ests. Keep comparing! And keep extending your knowledge in new ways. As one 
chapter noted, “variety is the spice of life.” By collecting a variety of thinkers who 
have tackled similar questions using different tools, I hope we have added to your 
toolbox.
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Verb learning, 4, 5
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Verb lexicon, 133
Verb meanings
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